
73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22- C1,3,3,x73038 Page 1 of 12

IAC-22-C1,3,3,x73038

Neural Networks for Onboard Maneuver Design

Nathan Parrish Réa*, Timothy M. Sullivanb, Matthew D. Popplewellc,

Kirk S. Roerigd, Clayton Michaele, Tyler Hanff, Tyler Presserg

a Advanced Space, LLC, 1400 W 122nd Ave, Westminster, CO 80234, nathan.re@advancedspace.com
b Advanced Space, LLC, 1400 W 122nd Ave, Westminster, CO 80234
c Advanced Space, LLC, 1400 W 122nd Ave, Westminster, CO 80234, matthew.popplewell@advancedspace.com
d Advanced Space, LLC, 1400 W 122nd Ave, Westminster, CO 80234, kirk.roerig@advancedspace.com
e Advanced Space, LLC, 1400 W 122nd Ave, Westminster, CO 80234
f Advanced Space, LLC, 1400 W 122nd Ave, Westminster, CO 80234, tyler.hanf@advancedspace.com
g Advanced Space, LLC, 1400 W 122nd Ave, Westminster, CO 80234, tyler.presser@advancedspace.com

* Corresponding Author

Abstract

 This paper presents a general neural network framework, Neural Networks for Electric Propulsion (NNEP),

for spacecraft autonomous onboard maneuver design and its application to several astrodynamics regimes. A previous

version of this work applied a neural network (NN) model to making a single low-thrust trajectory correction in cislunar

space. This paper extends the prior work to allow any number of low-thrust trajectory corrections in cislunar space and

implements it in a general framework. This framework also allows space missions to offload the computational “heavy

lifting” to ground-based computers. Ground systems generate training data (consisting of tens of thousands of off-

nominal maneuver designs) and train a series of NNs, where each NN is applicable to a predefined range of states

and/or epochs. The framework’s computational burden for the spacecraft is minimal and easily fits within most current

flight computers. The NN framework is also implemented in prototype flight software as a coreFlight System (cFS)

app with minimal external dependencies. Simulation results show accuracy and propellant use comparable to or better

than the best human-in-the-loop ConOps. This framework is extended further to apply to interplanetary low-thrust

trajectory correction, geostationary orbit (GEO) station keeping, and station keeping in Gateway’s near-rectilinear halo

orbit (NRHO).

Keywords: Neural Networks, Maneuver Design, Autonomous, Onboard

Acronyms/Abbreviations

AI = Artificial Intelligence

AoL = Argument of Latitude

BLT = Ballistic Lunar Transfer

CAPS = Cislunar Autonomous Positioning System

cFS = coreFlight System

CRTBP = Circular-Restricted Three Body Problem

ECEF = Earth-centered Earth-fixed

ECI = Earth-centered inertial

EP = Electric Propulsion

FSW = Flight Software

GEO = Geostationary Orbit

Isp = Specific Impulse

LM = Levenberg-Marquardt

MLP = Multilayer Perceptron

NIM = NRHO Insertion Maneuver

NN = Neural Network

NNEP = Neural Networks for Electric Propulsion

NRHO = Near Rectilinear Halo Orbit

OMM = Orbit Maintenance Maneuver

TCM = Trajectory Correction Maneuver

TPBVP = Two Point Boundary Value Problem

TIP = Trajectory Interface Point

VNB = Velocity-Normal-Binormal

1. Introduction & Background

1.1 Motivation

The state of the art for deep space mission navigation

and operation is to have a dedicated team of 2-3 people

for a single spacecraft, plus a crew to run the ground

station. The deep space navigation process consists of

spacecraft downlink, state estimation, trajectory re-

optimization, hardware sequencing, and data uplink

require two to three days. Ground station tasking

constraints delay the process further, so spacecraft

instructions are often days to weeks old by execution

time. Aggressive ground scheduling reduces the delay to

several days but further reduction requires automation.

Two examples of this are the Dawn and BepiColombo

missions. The BepiColombo mission (arriving at

Mercury in 2025) uses ground timelines of 1 week [1].

The Dawn mission used timelines of 1-5 weeks during its

the interplanetary transfer, 3 days during normal

operations at Vesta, and 36 hours while passing through

unstable resonances with Vesta’s gravity field [2].

Regardless of the length of the timeline, the spacecraft

always used thruster instructions based on out-of-date

navigation results.

mailto:nathan.re@advancedspace.com
mailto:matthew.popplewell@advancedspace.com
mailto:kirk.roerig@advancedspace.com
mailto:tyler.hanf@advancedspace.com
mailto:tyler.presser@advancedspace.com

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22- C1,3,3,x73038 Page 2 of 12

In addition to deep space missions, the space industry

is trending towards a larger number of small spacecraft,

enabling new capabilities at lower costs. This trend will

also necessitate automating operations.

In response to the growing need for real-time and

onboard maneuver planning for spacecraft, this paper

presents a general framework using neural networks for

the maneuver planning process. The framework

leverages the powerful fundamental principles of optimal

control and a rich field of recent advancements in the area

of artificial intelligence (AI) to automate spacecraft

maneuver correction, resulting in improved spacecraft

maneuver accuracy, lowered operations complexity, and

cost savings. Specifically, NNs are used as function

approximators, learning the complex relationship

between spacecraft state and the costates defining the

optimal control to return to a reference trajectory.

Typically, when optimizing spacecraft maneuvers, a

mission designer is tasked with solving a two-point

boundary value problem (TPBVP). Solving the TPBVP

is a numerically sensitive task that takes significant

computational resources to solve. Solving such a problem

also requires large numerical optimization software

libraries and long runtimes. Both requirements make it

unappealing to solve the TPBVP in flight software

(FSW) running on a limited-performance flight

computer. The framework presented in this paper solves

these problems by “learning” the optimal solution as a

function of the state which can then be uploaded and

evaluated onboard the spacecraft. In this deployment, the

computationally challenging training is done on the

ground and the evaluation of the NN is done onboard the

spacecraft. To demonstrate the viability of the framework

for onboard spacecraft computations, it is implemented

in prototype flight software as a cFS app.

This paper provides an overview of the neural

network architecture as well as the framework built

around it to develop maneuvers. Several applications of

this framework are also analyzed with simulation results

provided for each. Results of tests using the framework

as a cFS app are also discussed.

1.2 Background: optimal control

Optimal control theory forms the basis of the neural

network framework. An optimal control problem within

the presented framework is defined as: Minimize the

performance index 𝐽 given as:

𝐽 = 𝐾(𝑥0, 𝑡0, 𝑥𝑓 , 𝑡𝑓) + ∫ 𝐿(𝑥, 𝑢, 𝜏)𝑑𝜏

𝑡𝑓

𝑡0

 (1)

where 𝐾 is the cost of the endpoints and 𝐿 is the cost of

the path. In addition, 𝑥 is the state, 𝑢 is the control, and 𝑡

is time. The subscript 0 represents initial, and the

subscript 𝑓 represents final. The state vector is subject to

differential constraints (the state dynamics) given as:

 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑝, 𝑡) (2)

where 𝑝 is a vector of constant parameters. Terminal

constraints are applied as:

 𝑔(𝑥0, 𝑡0, 𝑥𝑓 , 𝑡𝑓) = 0 (3)

As trajectory optimization is nearly always an

underdetermined problem, additional constraints must be

introduced to find an optimal trajectory. The constraints

are derived via the Hamiltonian as follows:

 𝐻 = 𝐿(𝑥, 𝑢, 𝑡) + 𝜆 ∙ 𝑥̇(𝑡) (4)

where 𝜆 are the costates. The costate dynamics are then

given by

 𝜆 = −𝜕𝐻/𝜕𝑥 (5)

The Hamiltonian Minimization Condition readily yields

the optimal control policy

 𝑢∗(𝑥, 𝜆, 𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢 𝐻(𝑥, 𝜆, 𝑢, 𝑡) (6)

For the minimum fuel transfer, the 𝐿 term of the

objective function is chosen as

 𝐿 = 𝑢(𝑡) (7)

However, this results in a numerically sensitive problem.

To make the indirect optimal control problem easier to

solve, the 𝐿 term of the objective function is chosen

differently as:

𝐿 = 𝑢 + 𝜖[𝑢 𝑙𝑜𝑔 𝑢 + (1 − 𝑢) 𝑙𝑜𝑔 (1 − 𝑢)] (8)

where 𝜖 is a homotopy parameter. When 𝜖 is ~1, the

optimal control is very smooth. As ϵ is reduced to, say,

10-4, the optimal control becomes nearly

indistinguishable from the minimum fuel solution. This

modification to the objective function was studied by

Bai, Turner, and Junkins [3], then further refined by

Bertrand and Epenoy [4], and studied in the context of

NN optimal control by Parrish [5]. To keep the problem

formulation simple and generic to different dynamical

environments, additional path constraints can be

introduced.

For low thrust trajectories, the NN is tasked with

learning the relationship between a spacecraft’s current

state, which is perturbed from a nominal reference

trajectory, and the costates, 𝜆 , for an optimal maneuver

that returns to the reference trajectory.

1.3 Background: neural networks

Neural networks are a mathematical tool capable of

approximating arbitrarily complex functional

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22- C1,3,3,x73038 Page 3 of 12

relationships. NNs are inspired by biological brains and

consist of a network of “neurons”, where each neuron

performs a basic mathematical operator on its inputs,

passing its output to the next neuron.

The NNs used in this paper are simple feedforward

networks consisting of an input layer, a series of hidden

layers, and an output layer. This network formulation is

also known as a multilayer perceptron (MLP). A generic

feedforward neural network with a single hidden layer is

shown below in Figure 1.

Figure 1. A simple neural network with one hidden

layer.

One of the advantages of NNs is their ability to

approximate arbitrarily complex functions given

sufficient network sizes and training samples.

Additionally, while the training process takes significant

time, the evaluation of the network given a set of inputs

is extremely fast and requires few computational

resources, making NNs suitable for flight-approved

hardware.

2. Methods

2.1 Training data generation

Much of the complexity of the framework is in the

generation of quality training data. This section describes

how those simulated data are created for each type of

application.

2.1.1 Low thrust transfer general approach to

training data generation

A reference trajectory must be available for the

spacecraft to follow. The reference trajectory can be

generated by any means, as the training sample

generation only requires the position and velocity over

time. In this work, we use a proprietary tool to build an

optimal trajectory with the following high-level steps:

• Direct multiple shooting in circular-restricted

three body problem (CRTBP) dynamics, with

mesh refinement to add more nodes near lunar

close approaches.

• Indirect multiple shooting in the CRTBP with the

smoothed minimum fuel objective function.

• Convert solution in CRTBP to an ephemeris

model.

• Direct multiple shooting in the ephemeris model.

• Indirect multiple shooting in the ephemeris

model with the smoothed minimum fuel

objective function.

Training data are generated by first choosing a time

𝑡∗ at random from the time span of the reference

trajectory. At time 𝑡∗ the position and velocity are

perturbed by some 𝛿𝑟 and 𝛿𝑣⃗ , drawn from random

uniform distributions with lower and upper bounds

𝑈(0, 𝛿𝑟max) and 𝑈(0, 𝛿𝑣max) .The choice of 𝛿𝑟max and

𝛿𝑣max define the a “training tube” size illustrated in

Figure 2.

Figure 2. Illustration of the “training tube” around

the reference path, used for low-thrust trajectory

corrections.

With the training tube defined, the final step is to

solve the fixed time TPBVP for the transfer back to the

nominal trajectory at time 𝑡∗ + 𝛥𝑡. The time interval 𝛥𝑡

is fixed and chosen for the problem, typically on the order

of a few days or tens of days. The use of a receding

horizon keeps the spacecraft close to the nominal path at

all times, thus keeping the spacecraft within the training

tube.

A core element of this approach is the use of

checkpoints at which the training samples are required to

return to the reference path. This is illustrated in Figure

3. We found that adding ~2-5 checkpoints with fixed final

times helped guide simulated spacecraft to stay on a fuel-

optimal trajectory. Checkpoints are added immediately

prior to sensitive events such as a flyby (when small state

errors can be hard to recover from) or the start of a long

thrust arc (when the control authority to respond to

anomalies is more limited).

Figure 3. Illustration of checkpoints with the

“training tube”. All training samples leading up to a

checkpoint epoch are required to return to the nominal

at the checkpoint, rather than at a receding time horizon.

Training samples can now be generated with indirect

single shooting. Partial derivatives for the trajectory

solver are computed via automatic differentiation, which

allows the trajectory to be solved to numerical precision.

An example of the training tube is given in Figure 4.

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22- C1,3,3,x73038 Page 4 of 12

Figure 4. Example training tube around an arbitrary

section of a nominal transfer.

2.1.2 Cislunar low thrust transfer training

data generation

The Earth-Moon system was chosen due to its

sensitive dynamics which makes learning accurate

corrections more difficult. Algorithms developed for this

dynamical environment will necessarily work for simpler

dynamics. Initial tests were conducted using the CRTBP

and then extended to a point-mass ephemeris model using

the JPL DE430 ephemeris.

The test transfer is from an Earth-Moon NRHO

(Gateway’s planned orbit) to a larger Earth-Moon L2

halo orbit. The nominal transfer’s time of flight is 24

days. The spacecraft has an initial mass of 1,000 kg and

a maximum thrust of 300 mN with an Isp of 2,000 sec.

This hypothetical spacecraft propulsion system is

equivalent to the high end of currently-feasible thrust-to-

weight ratios of electric propulsion (EP) spacecraft. The

maximum thrust is limited to 240 mN for the nominal

transfer to build in margin for recovery from errors. The

nominal transfer requires 5.4 kg of propellant. Spacecraft

thrusting is not allowed within a radius of 20,000 km

from the Moon to avoid the additional operational

complexity of a powered lunar flyby. The trajectory is

defined in the Moon-centered J2000 inertial frame. The

example NRHO to 𝐿2 transfer is shown in Figure 5. In

addition, the nominal transfer’s thrust profile is computed

as in Figure 6.

The nominal transfer and all NN training trajectories

are modeled with the point mass gravity of Earth, Moon,

and Sun from the DE430 ephemeris. The spacecraft

specific impulse (Isp) and maximum thrust are assumed

constant throughout the nominal transfer.

The training tube for this transfer is defined as 𝛿𝑟 =
500 𝑘𝑚 and 𝛿𝑣 = 5 𝑚/𝑠 relative to the nominal

trajectory. Training samples return to the nominal

trajectory after 4 days or at the next checkpoint epoch,

whichever is earlier.

Figure 5. NRHO to 𝐿2 nominal low thrust transfer,

viewed in the Earth-Moon rotating frame.

Figure 6. Nominal thrust profile vs. time for NRHO

to 𝐿2transfer.

2.1.3 Interplanetary low thrust transfer

training data generation

The same method for training sample generation is

also applied to an interplanetary, heliocentric transfer.

For this transfer, a solar electric propulsion model is used

to provide realistic spacecraft control authority. The

nominal transfer consists of an Earth launch, Mars flyby,

and finally Mars rendezvous, of which only the first leg

(Earth to Mars flyby) will be used to train the neural

network. This leg was designed with a duty cycle of 80%,

has a time-of-flight of 290 days, and has a total mass drop

of approximately 64.5 kg. The transfer uses near bang-

bang control to model real-world operations. The force

model used for the nominal trajectory and all NN

trajectories includes the point mass gravities of Earth,

Jupiter, Mars, and the Sun from the DE430 ephemeris.

Figure 7 illustrates a heliocentric inertial view of the

nominal interplanetary trajectory on which the

framework was trained.

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22- C1,3,3,x73038 Page 5 of 12

Figure 7. Sun-centered, inertial view of nominal

transfer.

The available thrust is a function of a realistic power

model. The power available to the electric propulsion

engine is inversely proportional to the square of the

distance from the Sun, with a maximum of 3 kW at 1 AU.

The engine model has a fixed Isp and jet efficiency (1500

s and 50%, respectively) and includes losses for regulator

efficiency, off-pointing, solar cell degradation, and bus

power requirements. The thrust curves for the

interplanetary transfer are given in Figure 8.

Figure 8. Available and nominal thrust used by

interplanetary transfer.

Training samples for the NN are continuously

generated in a defined region around the nominal transfer

according to the “training tube” described previously. For

this problem, we generated 150,000 samples between the

start and end of the nominal transfer in a uniform

distribution up to 5,000 km and 50 m/s in position and

velocity magnitude, respectively. The single shooting

algorithm then solves for the minimum fuel, smoothly-

varying-thrust costate solution that allows each sample to

rendezvous with the nominal transfer either 30 days later

or at the end of the transfer, whichever is sooner, from

the sample epoch.

2.1.4 GEO station keeping training data

generation

The GEO station keeping problem is based on the

idea of keeping a spacecraft within an operational slot

defined by latitude and longitude bounds. Perturbations

from solar and lunar point mass gravities, solar radiation

pressure, and the non-uniformity of Earth’s gravitational

field cause a GEO spacecraft to drift in the longitudinal

and latitudinal directions from its nominal nadir location.

The effects of these perturbations are illustrated in Figure

9.

Figure 9. Natural longitudinal and latitudinal drift

due to perturbations.

Autonomous maneuver planning for GEO spacecraft

has been studied extensively in literature [6], [7].

However, existing strategies rely on linearized dynamical

models or approximate optimization methods. Neural

Networks provide a means for on-board maneuver

correction without over-simplifying the problem.

GEO station keeping using chemical propulsion

consists of two separate maneuver types: an east-west

maneuver that corrects longitudinal drift and a north-

south maneuver that corrects latitudinal drift. The

maneuvers are described in the Velocity-Normal-

Binormal (VNB) local frame. East-west maneuvers are

performed solely in the velocity direction which

increases or decreases the orbit semi-major axis,

consequently decreasing or increasing the orbit angular

speed and causing the spacecraft to drift westward or

eastward, respectively. Eventually, the influence of the

orbit perturbations creates a turnaround point, at which

the spacecraft begins drifting in the opposite direction.

For a spacecraft that experiences a natural eastward

drift, an optimal east-west maneuver places the

turnaround point at the westerly boundary of the

operating slot in order to maximize the time between

maneuvers. North-south maneuvers return the inclination

of the orbit to zero. Maneuvers that only change

inclination require a component in both the velocity and

orbit normal directions. However, for this application, the

north-south maneuvers consist of a burn solely in the

orbit normal direction. Performing such a maneuver

causes a deviation from the nominal orbit semi-major

axis and, consequently, an east-west maneuver frequently

immediately follows a north-south burn. Experience has

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22- C1,3,3,x73038 Page 6 of 12

shown that a NN can more easily learn the north-south

maneuvers when the problem is structured this way. An

example EW maneuver is shown in Figure 10.

Figure 10. An example east-west maneuver – the

spacecraft (originally blue) approaches the easterly

boundary of the operational box (30.05°) causing a

maneuver to be performed. The spacecraft (now red) is

propagated to the turnaround point near the westerly

boundary of the box (29.95°).

For this problem, the spacecraft is initialized in GEO

with a nadir point of 30° East and 0° North and an epoch

of 29373 UTC MJD. The operational slot is defined with

longitudinal and latitudinal bounds of ±0.1° to model

realistic application. To generate samples, a targeting

scheme in GMAT delivers the optimal station keeping

maneuvers for the nominal GEO spacecraft over ten

years. Additional samples are created by perturbing the

initial state off the nominal and again finding the optimal

station keeping history for ten years. The perturbed initial

states consist of combinations of initial epoch, latitude,

and longitude values in the ranges of [29373, 29391 UTC

MJD], [-0.3, 0.3°], and [29.96,30.02°] respectively.

A separate NN is trained for each maneuver type. The

input layer of the NN takes 14 quantities: the spacecraft’s

latitude, longitude, Cartesian velocity components in an

Earth-centered Earth-fixed (ECEF) frame, longitude rate,

orbit eccentricity, and the Cartesian position components

of the Moon and Sun in an Earth centered inertial (ECI)

J2000 frame. The longitude rate is found by taking the

difference of the Earth’s rotation rate and the spacecraft’s

mean motion. The output layer of the NN is a single

quantity: the burn magnitude of the appropriate

maneuver. A NN with three hidden layers of 30 neurons

each and these input and output layers (total of 3,271

learned NN weights) is capable of learning both

maneuver types well.

To evaluate the performance of the NN, it is desirable

to propagate a GEO spacecraft in GMAT using a high-

fidelity environment. However, the NN is built and

trained using the Julia language and GMAT lacks a built-

in interface with Julia. In order to pass the NN

evaluations to GMAT, a TCP socket is used to send

information between a Julia script, which evaluates the

NN, and a Python script, which interfaces with the

GMAT API.

A GEO spacecraft, with an initial state at 29373 UTC

MJD and a sub-satellite point of 30° East and 0° North,

is propagated using the above simulation scheme for 10

years. The spacecraft is propagated in GMAT until an

EW or NS station keeping maneuver is required. A

Python script collects the end state using the GMAT API

and sends the state to Julia over the TCP socket. A Julia

script then determines which maneuver type is required,

evaluates the correspond NN, and sends the burn

magnitude over the socket to Python. Python then

reinitializes the GMAT simulation with the previous end

state and corresponding burn. GMAT performs the NN

burn before again propagating until the next maneuver.

To make the simulation more realistic, navigation and

thruster errors are simulated. The navigation error is

modeled as Gaussian noise 𝒩(0, σ2) where σ is the

standard deviation according to the values given in Table

1.

Table 1. GEO simulation setup.

State Component 𝜎

Latitude (deg) 5e-5

Longitude (deg) 5e-5

Cartesian velocity

components (cm/s)
1

Eccentricity 1e-6

Orbit period (seconds) 0.5

The thruster error is modeled at 2% for this

simulation. The Moon and Sun Cartesian positions in the

ECI frame are obtained through JPL’s SPICE toolkit and

thus no error is applied to these values.

2.1.5 NRHO station keeping training data

generation

Within the Cislunar system, the station keeping

problem was also analyzed using the framework. The

authors specifically chose to test the framework to

simulate station keeping within an NRHO due to its

relevance for the upcoming NASA Lunar Gateway.

NASA’s upcoming Lunar Gateway is planned to operate

in a southern L2 NRHO. The orbit has close approaches

to the lunar surface allowing low-cost access to the lunar

surface and consistent line-of-sight with Earth ground

stations. The orbit is phased such that it avoids all total

Earth eclipses [8]. Advanced Space’s CAPSTONE

mission launched on June 28, 2022 and will demonstrate

operations within the same NRHO that will be used by

the Gateway.

Existing station keeping strategies for the designated

NRHO target a velocity vector component in the Earth-

Moon rotating frame and a time of perilune passage

several revolutions downstream of a given state.

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22- C1,3,3,x73038 Page 7 of 12

Targeting the velocity component in the 𝑥̂ direction (𝑣𝑥)

at perilune passage 6.5 revolutions downstream is

currently favored as it delivers a minimum Δ𝑉 and

maintains the NRHO near its reference. The planned

station keeping strategy for CAPSTONE follows the

strategy planned for Gateway: perform an orbital

maintenance maneuver (OMM) up to once every

revolution that targets both 𝑣𝑥 and 𝑇𝑝 at an osculating

true anomaly of 200° [9]. The 𝑣𝑥 used for targeting is the

velocity in the 𝑥̂ direction of the Earth-Moon rotating

frame at perilune. This 𝑣𝑥 and the time of perilune

passage (𝑇𝑝) are compared to those of the reference orbit.

When 𝑇𝑝 is within a given threshold, the maneuver only

targets 𝑣𝑥.

Figure 11. Maneuver location on NRHO viewed

from the Y-Z plane of the Earth-Moon rotating frame.

Training samples for the NN are generated by

perturbing the six-dimensional state of the orbit at each

OMM epoch for the full reference period (15 years, up to

2035). At each OMM epoch, the reference state is

determined from ephemeris and 500 samples are

generated by perturbing the position and velocity vectors

such that they form a uniform spherical distribution with

3σ of 3,000 km and 30 cm/s respectively. For each

sample, the corresponding station keeping maneuver that

targets VX and TP 6.5 revolutions downstream is

designed using the Jet Propulsion Laboratory’s Monte

library. The OMM is designed using a realistic dynamical

model with the forces modeled in Table 2 through Table

4.

Table 2. Point masses used for NRHO dynamics.

Point Masses

Sun

Mercury

Venus

Mars Barycenter

Jupiter Barycenter

Saturn Barycenter

Neptune Barycenter

Uranus Barycenter

Pluto Barycenter

Table 3. Spherical harmonics used for NRHO

dynamics.

Body Dataset Order

Earth GGM03C 16

Moon GL900D 16

Table 4. Solar Radiation Pressure parameters for

NRHO dynamics.

Parameter Value

Flat Area (𝑚2) 0.6

Mass (𝑘𝑔) 25

𝐶𝑟 1.5

A single feedforward neural network is trained for

all OMM epochs. The NN consists of two hidden layers

each with 40 neurons. The input layer has a size of 42

consisting of:

• the six-dimensional perturbed sample state, six-

dimensional reference state,

• six-dimensional error vector between the

perturbed and reference states,

• three-dimensional relative spacecraft-Sun

position vector in the synodic frame,

• three-dimensional relative spacecraft Earth

position vector in the synodic frame,

• three-dimensional vector of Euler angles

describing the Moon orientation in inertial space,

• six-dimensional perturbed state 6.5 revolutions

downstream,

• six-dimensional reference state 6.5 revolutions

downstream,

• the 𝑣𝑥 difference between the perturbed state and

reference 6.5 revolutions downstream, and

• the 𝑇𝑝 difference between the perturbed state and

reference 6.5 revolutions downstream.

The output layer has a size of three consisting of the

impulsive three-dimensional maneuver vector in the

Earth-Moon rotating frame. In total, there are 3,483

learned NN weights.

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22- C1,3,3,x73038 Page 8 of 12

2.1.6 TCM training data generation

As mentioned in section 2.1.5, Advanced Space’s

CAPSTONE mission will demonstrate operations within

the same NRHO that will be used by the Gateway. In

order to reach and eventually insert into the target

NRHO, CAPSTONE follows a ballistic lunar trajectory

(BLT), a fuel-efficient path that leverages the Sun’s

gravity to increase radius of periapsis and inclination.

Along the BLT, several trajectory correction maneuvers

(TCMs) occur to clean up launch vehicle insertion errors,

maneuver errors, and navigation errors. Nominally, five

TCMs will occur along the BLT but the exact number can

increase to eight depending on vehicle parameters,

insertion errors, maneuver errors, and navigation errors.

The TCMs are designed using a three-burn

optimization process [10]. When designing any given

TCM n, the backpropagated state from the NRHO at the

next TCM n+1 epoch is targeted and the total ΔV of

TCM n, TCM n+1, and the NRHO Insertion Maneuver

(NIM) is minimized. For example, when designing

TCM1, the total ΔV of TCM1, TCM2, and NIM is

minimized while the targeted state is that of the reference

trajectory at the time of TCM2. Nominally, TCM1

through TCM5 are designed in this manner with TCM5

also designing an optional TCM6. Additionally, if

TCM1, which cleans up initial launch errors, is above a

threshold defined by the spacecraft parameters then

optional maneuvers TCM1b and TCM1c are also

designed. The approximate locations of the TCMs for a

representative BLT are given in Figure 12.

Figure 12. Approximate locations of nominal TCMs

for a given BLT [10].

TCM training data is generated via Monte Carlo

simulation of the operational maneuver design process.

Realistic state errors are sampled relative to the reference

trajectory at each pre-planned TCM epoch, then the 3-

burn optimization described above is carried out to

generate the Δ𝑉 vector corresponding to the state error.

For this test case, the training dataset only includes

the nominal TCM1 through TCM5. Any TCM1

maneuver that is over 20 m/s, and would normally require

a secondary TCM1 burn, is filtered from the dataset

before training. A BLT reference trajectory

corresponding to a previously designed Trajectory

Interface Point (TIP) of June 2, 2022, and the

corresponding TCM maneuver schedule is used to

determine the reference TCM states. Sample states are

generated by uniformly perturbing each TCM reference

state in position and velocity such that they form a

spherical distribution. At each sample state the

corresponding TCM is designed using the

aforementioned process. The TCM design, and later

simulation, is performed in the realistic dynamical model

identical to the NRHO dynamics outlined in Table 2

through Table 4.

A separate feedforward NN is used to learn each of

the five nominal TCMs. The NN consists of three hidden

layers with 30 neurons each. The input layer is of

dimension 30 consisting of the six-dimensional perturbed

sample state, six-dimensional reference state, six-

dimensional error vector between the perturbed and

reference states, six-dimensional relative spacecraft-Sun

state vector in inertial space, and six-dimensional relative

spacecraft-Earth state vector in inertial space. The output

layer is of size four consisting of the TCM burn duration

and three-dimensional unit direction vector. In total,

there are 2,914 learned NN weights.

2.2 Machine learning framework

Based on experience from Parrish [5], we chose to use

the Levenberg-Marquardt (LM) optimization algorithm.

NNs are trained using a custom version of the Levenberg-

Marquardt (LM) algorithm. At each iteration, the LM

algorithm computes the Jacobian of all training samples

with respect to all trainable parameters and uses this to

adjust the trainable parameters to minimize the sum of

squared errors. When the objective is to minimize the

sum of squared errors, the Jacobian can be used to

accurately approximate the Hessian as well, leading to

second-order convergence on the optimal NN weights.

The LM algorithm is suited for regression problems with

NNs containing up to tens of thousands of weights. It is

not used for classification problems such as natural

language processing or image recognition because those

require NNs with millions or even billions of weights.

Use of the LM training algorithm on such a large NN

would require computing an excessive number of partial

derivatives and is thus computationally intractable. For

small NNs, such as those commonly used in regression

problems, the LM algorithm has been found to converge

orders of magnitude faster than methods that only

compute a vector gradient.

The LM algorithm makes updates to the weights as

follows:

𝑊′ = 𝑊 − (𝐽𝑇𝐽 + 𝜇𝐼)−1(𝐽𝑇𝑒) (9)

where 𝑊 is the vector of model weights, 𝐽 is the Jacobian

of model outputs with respect to model weights, 𝐼 is an

appropriately-sized identity matrix, 𝜇 is an adjustment

factor to smoothly vary between 1st and 2nd order

convergence, and 𝑒 is the vector of residuals (the

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22- C1,3,3,x73038 Page 9 of 12

difference between the model output and the desired

model output).

At the start of this work, the only performant,

publicly-available LM implementation was in MATLAB,

and even that implementation was not capable of GPU

acceleration. We traded all the available implementations

and ultimately decided to write our own in the Julia

language [11] with GPU acceleration via the CUDA.jl

package [12]. Our implementation uses analytically-

defined partial derivatives that we developed and

implemented with great regard to speed. The Jacobian

matrix is strategically broken into sections, and each

section is computed by a separate GPU thread. The

performance bottleneck is the low-level cuBLAS matrix

pseudo-inverse in equation 9.

Our implementation is based on the work by

Tomislav et al [13], particularly with regard to the

automatic weight decay variation. Testing on a variety of

problems has found this implementation to converge

more quickly and robustly than naïve choice of the 𝜇

parameter.

2.3 ConOps for onboard implementation

The proposed framework would be implemented on

board a spacecraft as follows. First, ground operators

design a nominal transfer from the current state to some

target state, taking into consideration all necessary

constraints. Then, the same ground software is used to

solve tens of thousands of similar, perturbed transfers.

The solution of each perturbed transfer results in a

pair of input-output vectors: given the current state vector

(and problem-specific additional context), return the

primer vector (for continuous-thrust) or the Δ𝑉 vector

(for impulsive maneuvers) corresponding to the optimal

path to rendezvous with the target. The ground software

then trains a NN to approximate the relationship between

the input and the output.

Since each of the perturbed trajectories is short and

has a good guess from the nominal path, the perturbed

optimal trajectories can be generated quickly. Proprietary

trajectory optimization tools at Advanced Space can

generate these training samples in a few hours on a

modern workstation computer. If needed, the task can be

parallelized to hundreds or even thousands of CPUs in a

distributed computing environment to generate sufficient

training samples within minutes.

Once training samples are generated, the NN model

is trained. The model is saved as a binary file dictating

the shape of the model and the model weights, and the

binary file is either loaded on the spacecraft prior to

launch or uplinked to the spacecraft during flight.

Trajectory corrections are made continuously over

the course of an orbit transfer. The frequency of

corrections is tunable for the mission, with tests here

using a 10–60-minute update cadence.

The spacecraft is assumed to perform onboard orbit

determination which returns a state error signal. Example

onboard orbit determination technologies include the

Cislunar Autonomous Positioning System (CAPS) which

is under development at Advanced Space [10] , GNSS,

optical navigation, one-way ranging with an atomic

clock, and other technologies in development. The

spacecraft passes the best estimate of the current state

into the NN model, which returns the costate vector or

Δ𝑉 vector. The spacecraft numerically integrates the state

forward in time to the next tick, with control held

inertially fixed. Other elements of the FSW turn the

control vector into thruster instructions which are

executed to fly the trajectory. A schematic of the

framework’s concept of operations is shown below in

Figure 13.

Figure 13. Schematic of onboard ConOps.

3. Results: Low Thrust Control

To evaluate the performance of the NNs, a spacecraft

is flown along the reference trajectory using the NNs to

deliver trajectory corrections. The simulation propagates

two spacecraft concurrently, a “truth” and a “predicted”

spacecraft. The predicted spacecraft’s state is

periodically updated to that of the truth, plus some

navigation noise, according to a navigation frequency

parameter. At a defined NN evaluation frequency, the

predicted spacecraft’s state is used to evaluate the

appropriate NN and deliver the desired control. To

translate the costate outputs of the NNs to thrust

commands, the NN is evaluated frequently, and the

spacecraft thruster is only fired when the magnitude of

the costate control law is above a defined threshold

parameter. The truth spacecraft executes the desired

control commands from the predicted spacecraft plus

some thruster error.

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22- C1,3,3,x73038 Page 10 of 12

3.1 Earth-Moon 3-body transfer

The results from Monte Carlo simulation of a NRHO

to 𝐿2 transfer with the proposed framework and

simulated ground control are provided in Table 5, for a

range of navigation-update cycle speeds. Historically,

achieving a 2-day navigation and control update loop

with human-in-the-loop control has required 24-hr

coverage from operations teams and is only practical for

short periods of critical operations. However, the speed

of the control loop in space is limited only by the onboard

navigation requirements. Once a state estimate is

available for NNEP, it can update the thruster commands

immediately.

Table 5. Comparison of neural net framework and

simulated ground control.

Simulation type

(nav update cycle)

Final Error

(km)

Average

Propellant (kg)

NNEP 2-day 39 ±15 6.03±0.24

NNEP 4-day 54±23 6.16±0.33

NNEP 6-day 129±84 6.22±0.32

Ground 2-day 22±11 6.1±1.1

Ground 4-day 75±63 6.8±1.3

3.2 Interplanetary transfer

Table 6 shows the results for a 200-trial Monte Carlo

simulation of the NNEP and ground control strategies for

different navigation update frequencies. NNEP

outperforms the ground control in terms of final error

from the reference trajectory but uses slightly more fuel

in the process. The NNEP software makes up for larger

navigation errors with a nearly instantaneous navigation

solution to control update cadence.

Table 6. Neural net framework and human control

comparison (N = 200). Data provided as

mean ± standard deviation.

Simulation type

(nav update cycle)

Final Error

(km)

Propellant

use (kg)

NNEP 8-day 167±19 64.46±0.09

NNEP 16-day 205±60 64.50±0.10

NNEP 28-day 184±62 64.49±0.10

Ground 8-day 364±252 64.22±0.03

Ground 16-day 525±321 64.25±0.06

Ground 28-day 879±516 64.28±0.13

4. Results: Impulsive Control

4.1 GEO station keeping

Results for the GEO station keeping trial show that

the NN framework can deliver necessary station

keeping maneuvers such that the spacecraft maintains

its operational slot for the entire 10-year simulation

time. The total Δ𝑉 for all maneuvers over 10 years using

NNEP is 521.365 m/s. In comparison, a ground

simulation, in which GMAT propagates the spacecraft

and calculates optimal station keeping burns, results in a

total Δ𝑉 of 520.481 m/s over 10 years. The NN delivers

near optimal maneuvers instantaneously without the

need for a human operator or optimization software.

Figure 14. Motion of a GEO spacecraft in the ECEF

frame propagated for 10 years using the NN for station

keeping predictions.

4.2 NRHO station keeping

To evaluate the performance of the NN, a spacecraft

in the defined NRHO is propagated for the full reference

period (15 years) using the NN to deliver OMMs every

revolution. The spacecraft is propagated in JPL’s Monte

Python package. Since the NN is constructed and trained

in the Julia language but the simulation occurs in Python,

a TCP socket is used to pass information between a Julia

script running concurrently with the Python simulation.

Two spacecraft are simulated, a “NN” spacecraft that

evaluates the trained NN for OMMs and a “truth”

spacecraft that uses SNOPT and the aforementioned

station keeping strategy to deliver OMMs. Both are

initialized with the same state which is randomly

generated and slightly off-reference. To make the

simulation more realistic, navigation and thruster errors

are simulated. The navigation noise is modeled as a

uniform spherical perturbation to the six-dimensional

spacecraft state with 3𝜎 of 1 km and 1 cm/s for position

and velocity respectively. The thruster error is modeled

as a uniform spherical distribution in direction with a

random magnitude according to a uniform distribution

with an upper bound of 2% of the maneuver magnitude.

Results in Table 7 show that the NN can deliver

sufficient OMMs such that the NN spacecraft remains in

the vicinity of the reference NRHO for the entire 15-year

reference period. A Monte Carlo analysis was performed

by running the above simulation 100 times and collecting

the results.

The NN delivers OMMs to remain within the vicinity

of the NRHO over 15 years without the need for a ground

team to design maneuvers. The NN, while using slightly

more total DV over the simulation time, outperforms the

ground control in terms of error from the reference orbit.

It should be noted that the amount of difference in Δ𝑉

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22- C1,3,3,x73038 Page 11 of 12

between the NN control and ground control is negligible

compared to effect of momentum desaturation

maneuvers, which were not modeled here.

Table 7. NN and ground truth control comparison (N =

100). Data provided as mean ± standard deviation.

Performance Metric NN Control Ground

Control

Annual ΔV (m/s) 0.31 ± 0.04 0.25 ± 0.02

Maximum position

deviation (km)
554 ± 33 780 ± 12

4.3 TCM’s for CAPSTONE

To evaluate the performance of the NN, a spacecraft

is flown on the reference BLT using the NNs to deliver

each nominal TCM. The spacecraft is propagated in

JPL’s Monte Python package from TIP to TCM6. Since

the NN is constructed and trained in the Julia language

but the simulation occurs in Python, a TCP socket is used

to pass information between a Julia script running

concurrently with the Python simulation. To make the

simulation more realistic, navigation error is simulated.

The navigation noise is modeled as a uniform spherical

perturbation to the six-dimensional spacecraft state with

3𝜎 of 5 km and 5 cm/s for position and velocity

respectively.

Table 8 shows the results of a 200 trial Monte Carlo

simulation of the CAPSTONE BLT with NNs delivering

the necessary TCMs. The NNs can provide sufficient

maneuvers such that the spacecraft remains close to the

reference trajectory autonomously.

Table 8. NN control Monte Carlo results (N = 200).

Data provided as mean ± standard deviation.

Performance Metric NN Control

Total ΔV (m/s) 83 ± 5

Final position error (km) 372 ± 20

5. Results: FSW implementation

The on-board neural network inferencing

functionality is designed to be platform independent.

Thus, NASA’s cFS framework is used to host the neural

network software. To maintain low-compute

requirements, trained models are serialized and then

uplinked to the on-board system. As model integrity and

model relevance are key factors to nominal operations,

the FSW is designed to allow for model uplinks to occur

at any time to replace the current model. To handle off-

nominal exceptions during flight, the FSW is

implemented with a standby mode as shown in Figure 15,

allowing operators to provide recovery commands as

needed without model evaluations.

Figure 15. NNEP cFS App Order of Operations

The FSW implementation is designed to be minimally

intrusive for any spacecraft. We developed a custom

inference engine that is highly memory-efficient.

Profiling was carried out on a NN model representative

of a low-thrust trajectory corrector. Profiling of model

loading, de-serializing, and inference showed a peak

memory use of 86.5 kB. Software dependencies are also

minimal: the entire cFS app is dependent only on

NASA’s CSPICE.

The FSW has been simulated using a mock ground-

station to uplink models, send commands, and to receive

telemetry. Tests were conducted with nominal and off-

nominal initial conditions, as well as with varying

simulation durations. Furthermore, standby mode and in-

flight FSW reinitialization were also tested to ensure

correct recovery behavior. The simulation results were

compared with the non-FSW implementation simulation

results and proved to be equivalent. We hope to be able

to share more details of the FSW implementation in a

future publication.

6. Conclusion

This paper presents a framework for autonomous and

onboard maneuver planning in both low thrust and

impulsive thrust spacecraft built upon NNs. To illustrate

the NN’s ability to generate optimal control response in

different dynamical regimes, simulations were conducted

with both two- and three- body trajectories. To support

the framework’s usability in flight, a concept of

operations is designed to utilize the framework with data

that would traditionally be available to the spacecraft and

to ground operators.

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22- C1,3,3,x73038 Page 12 of 12

The next contribution is the sample generation

method for the NN. To generate training samples for the

NN, the sampling tube method is proposed where a

nominal trajectory is designed and thousands of

perturbed states are used to compute optimal return

maneuvers to the reference trajectory. With the neural

networks trained for different tasks, simulation results are

then presented for each maneuver design task in each

dynamical environment.

Finally, this paper also briefly summarizes a process

by which the framework can be implemented onboard a

spacecraft as a cFS application. Altogether, the proposed

framework and findings from subsequent analysis aim to

provide a highly generalizable architecture based on

neural networks for automated and onboard maneuver

planning in multiple dynamical environments.

Acknowledgements

This research was sponsored by the NASA SBIR

program, contract number 80NSSC20C0139.

References

[1] F. Castellini, G. Bellei and F. Budnik,

"BepiColombo Orbit Determination Activities

During Electric Propulsion Arcs," in AIAA

SciTech Forum, 2020.

[2] D. W. Parcher and G. J. Whiffen, "Dawn

Statistical Maneuver Design for Vesta

Operations," Advances in the Astronautical

Sciences, vol. 140, no. 818, pp. 1159-1176,

2011.

[3] X. Bai, J. D. Turner and J. L. Junkins,

"Bang-bang Control Design by Combing

Pseudospectral Method with a novel Homotopy

Algorithm," in AIAA, GNC-36: Hypersonic

Vehicles and Spacecraft Control I, Chicago,

2009.

[4] R. M. Byers, S. R. Vadali and J. L. Junkins,

"Near-minimum time, closed-loop slewing of

flexible spacecraft," Journal of Guidance,

Control, and Dynamics, vol. 13, no. 1, pp. 57-

65, 1990.

[5] N. Parrish., Low Thrust Trajectory

Optimization in Cislunar and Translunar

Space, dissertation: University of Colorado

Boulder, 2018.

[6] F. Brujin, S. Theil, D. Choukroun and E.

Gill, "Collocation of geostationary satellites

using convex optimization," Journal of

Guidance, Control, and Dynamics, vol. 39,

2016.

[7] D. Losa, M. Lovera, J. Mrmorat, T. Dargent

and J. Amalric, "Station keeping of

geostationary satellites with on-off electric

thrsuters," in IEEE Conference on Control

Applications , Germany, 2006.

[8] M. Thompson, M. Bollinger, N. Ré and D.

Davis, "An Analysis of Downstream

Uncertainty in NRHO Stationkeeping

Strategies," in AIAA SciTech Forum, National

Harbor, 2022.

[9] D. C. Davis, F. S. Khoury, K. C. Howell and

D. J. Sweeney, "Phase Control and Eclipse

Avoidance in Near Rectilinear Halo Orbits," in

43rd AAS Guidance, Navigation, and Control

Conference, Breckenridge, 2020.

[10] E. W. Kayser, J. S. Parker, M. Bollinger, T.

Gardner and B. Cheetham, "The Cislunar

Autonomous Positioning System Technology

Operations Navigation Experiment," in Ascend

2020, Virtual Event, 2020.

[11] J. Bezanson, A. Edelman, S. Karpinski and

V. B. Shah, "Julia: A Fresh Approach to

Numerical Computing," SIAM Review, no. 59,

pp. 65-98, 2017.

[12] T. Besard, C. Foket and B. De Sutter,

"Effective Extensible Programming:

Unleashing Julia on GPUs," IEEE Transactions

on Parallel and Distributed Systems, no. 1045-

9219, 2018.

[13] B. Tomislav, D. Majetic and D. Brezak,

"GPU Implementation of the Feedforward

Neural Network with Modified Levenberg-

Marquardt Algorithm," in 2014 International

Joint Conference on Neural Networks (IJCNN),

Beijing, 2014.

[14] E. W. Kayser, J. S. Parker, M. Bolliger, T.

Gardner and B. Cheetham, "The Cislunar

Autonomous Positioning System Technology

Operations and Navigation Experiment," in

Ascend 2020, Virtual Event, 2020.

