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Abstract 

 This paper presents a general neural network framework, Neural Networks for Electric Propulsion (NNEP), 

for spacecraft autonomous onboard maneuver design and its application to several astrodynamics regimes. A previous 

version of this work applied a neural network (NN) model to making a single low-thrust trajectory correction in cislunar 

space. This paper extends the prior work to allow any number of low-thrust trajectory corrections in cislunar space and 

implements it in a general framework. This framework also allows space missions to offload the computational “heavy 

lifting” to ground-based computers. Ground systems generate training data (consisting of tens of thousands of off-

nominal maneuver designs) and train a series of NNs, where each NN is applicable to a predefined range of states 

and/or epochs. The framework’s computational burden for the spacecraft is minimal and easily fits within most current 

flight computers. The NN framework is also implemented in prototype flight software as a coreFlight System (cFS) 

app with minimal external dependencies. Simulation results show accuracy and propellant use comparable to or better 

than the best human-in-the-loop ConOps. This framework is extended further to apply to interplanetary low-thrust 

trajectory correction, geostationary orbit (GEO) station keeping, and station keeping in Gateway’s near-rectilinear halo 

orbit (NRHO).     
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Acronyms/Abbreviations 

AI = Artificial Intelligence 

AoL = Argument of Latitude 

BLT = Ballistic Lunar Transfer 

CAPS = Cislunar Autonomous Positioning System 

cFS = coreFlight System 

CRTBP = Circular-Restricted Three Body Problem 

ECEF = Earth-centered Earth-fixed 

ECI = Earth-centered inertial 

EP = Electric Propulsion 

FSW = Flight Software 

GEO = Geostationary Orbit 

Isp = Specific Impulse 

LM = Levenberg-Marquardt 

MLP = Multilayer Perceptron 

NIM = NRHO Insertion Maneuver 

NN = Neural Network 

NNEP = Neural Networks for Electric Propulsion 

NRHO = Near Rectilinear Halo Orbit 

OMM = Orbit Maintenance Maneuver 

TCM = Trajectory Correction Maneuver 

TPBVP = Two Point Boundary Value Problem 

TIP = Trajectory Interface Point 

VNB = Velocity-Normal-Binormal 

 

1. Introduction & Background  

1.1 Motivation 

The state of the art for deep space mission navigation 

and operation is to have a dedicated team of 2-3 people 

for a single spacecraft, plus a crew to run the ground 

station. The deep space navigation process consists of 

spacecraft downlink, state estimation, trajectory re-

optimization, hardware sequencing, and data uplink 

require two to three days. Ground station tasking 

constraints delay the process further, so spacecraft 

instructions are often days to weeks old by execution 

time. Aggressive ground scheduling reduces the delay to 

several days but further reduction requires automation.  

Two examples of this are the Dawn and BepiColombo 

missions. The BepiColombo mission (arriving at 

Mercury in 2025) uses ground timelines of 1 week [1]. 

The Dawn mission used timelines of 1-5 weeks during its 

the interplanetary transfer, 3 days during normal 

operations at Vesta, and 36 hours while passing through 

unstable resonances with Vesta’s gravity field [2]. 

Regardless of the length of the timeline, the spacecraft 

always used thruster instructions based on out-of-date 

navigation results. 
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In addition to deep space missions, the space industry 

is trending towards a larger number of small spacecraft, 

enabling new capabilities at lower costs. This trend will 

also necessitate automating operations.   

In response to the growing need for real-time and 

onboard maneuver planning for spacecraft, this paper 

presents a general framework using neural networks for 

the maneuver planning process. The framework 

leverages the powerful fundamental principles of optimal 

control and a rich field of recent advancements in the area 

of artificial intelligence (AI) to automate spacecraft 

maneuver correction, resulting in improved spacecraft 

maneuver accuracy, lowered operations complexity, and 

cost savings. Specifically, NNs are used as function 

approximators, learning the complex relationship 

between spacecraft state and the costates defining the 

optimal control to return to a reference trajectory.  

Typically, when optimizing spacecraft maneuvers, a 

mission designer is tasked with solving a two-point 

boundary value problem (TPBVP). Solving the TPBVP 

is a numerically sensitive task that takes significant 

computational resources to solve. Solving such a problem 

also requires large numerical optimization software 

libraries and long runtimes. Both requirements make it 

unappealing to solve the TPBVP in flight software 

(FSW) running on a limited-performance flight 

computer. The framework presented in this paper solves 

these problems by “learning” the optimal solution as a 

function of the state which can then be uploaded and 

evaluated onboard the spacecraft. In this deployment, the 

computationally challenging training is done on the 

ground and the evaluation of the NN is done onboard the 

spacecraft. To demonstrate the viability of the framework 

for onboard spacecraft computations, it is implemented 

in prototype flight software as a cFS app.  

This paper provides an overview of the neural 

network architecture as well as the framework built 

around it to develop maneuvers. Several applications of 

this framework are also analyzed with simulation results 

provided for each. Results of tests using the framework 

as a cFS app are also discussed. 

 

1.2 Background: optimal control  

Optimal control theory forms the basis of the neural 

network framework.  An optimal control problem within 

the presented framework is defined as: Minimize the 

performance index 𝐽 given as:  

 
𝐽 = 𝐾(𝑥0, 𝑡0, 𝑥𝑓 , 𝑡𝑓)  + ∫ 𝐿(𝑥, 𝑢, 𝜏)𝑑𝜏 

𝑡𝑓

𝑡0

 (1)  

 

where 𝐾 is the cost of the endpoints and 𝐿 is the cost of 

the path. In addition, 𝑥 is the state, 𝑢 is the control, and 𝑡 

is time. The subscript 0  represents initial, and the 

subscript 𝑓 represents final. The state vector is subject to 

differential constraints (the state dynamics) given as: 

 

 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑝, 𝑡) (2)  

 

where 𝑝  is a vector of constant parameters. Terminal 

constraints are applied as: 

 

 𝑔(𝑥0, 𝑡0, 𝑥𝑓 , 𝑡𝑓) = 0 (3)  

 

As trajectory optimization is nearly always an 

underdetermined problem, additional constraints must be 

introduced to find an optimal trajectory. The constraints 

are derived via the Hamiltonian as follows:  

 

 𝐻 = 𝐿(𝑥, 𝑢, 𝑡) + 𝜆 ∙ 𝑥̇(𝑡) (4)  

 

where 𝜆 are the costates. The costate dynamics are then 

given by 

 

 𝜆 =  −𝜕𝐻/𝜕𝑥 (5)  

 

The Hamiltonian Minimization Condition readily yields 

the optimal control policy  

 

 𝑢∗(𝑥, 𝜆, 𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢 𝐻(𝑥, 𝜆, 𝑢, 𝑡) (6)  

 

For the minimum fuel transfer, the 𝐿  term of the 

objective function is chosen as 

 

 𝐿 = 𝑢(𝑡) (7)  

 

However, this results in a numerically sensitive problem. 

To make the indirect optimal control problem easier to 

solve, the 𝐿  term of the objective function is chosen 

differently as: 

 

𝐿 = 𝑢 + 𝜖[𝑢 𝑙𝑜𝑔 𝑢 + (1 − 𝑢) 𝑙𝑜𝑔 (1 − 𝑢)] (8)  

 

where 𝜖  is a homotopy parameter. When 𝜖  is ~1, the 

optimal control is very smooth. As ϵ is reduced to, say, 

10-4, the optimal control becomes nearly 

indistinguishable from the minimum fuel solution. This 

modification to the objective function was studied by 

Bai, Turner, and Junkins [3], then further refined by 

Bertrand and Epenoy [4], and studied in the context of 

NN optimal control by Parrish [5]. To keep the problem 

formulation simple and generic to different dynamical 

environments, additional path constraints can be 

introduced. 

For low thrust trajectories, the NN is tasked with 

learning the relationship between a spacecraft’s current 

state, which is perturbed from a nominal reference 

trajectory, and the costates, 𝜆 , for an optimal maneuver 

that returns to the reference trajectory.  

 

1.3 Background: neural networks 

Neural networks are a mathematical tool capable of 

approximating arbitrarily complex functional 
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relationships. NNs are inspired by biological brains and 

consist of a network of “neurons”, where each neuron 

performs a basic mathematical operator on its inputs, 

passing its output to the next neuron.  

The NNs used in this paper are simple feedforward 

networks consisting of an input layer, a series of hidden 

layers, and an output layer. This network formulation is 

also known as a multilayer perceptron (MLP). A generic 

feedforward neural network with a single hidden layer is 

shown below in Figure 1. 

 

 
Figure 1. A simple neural network with one hidden 

layer. 

One of the advantages of NNs is their ability to 

approximate arbitrarily complex functions given 

sufficient network sizes and training samples. 

Additionally, while the training process takes significant 

time, the evaluation of the network given a set of inputs 

is extremely fast and requires few computational 

resources, making NNs suitable for flight-approved 

hardware. 

 

2. Methods  

2.1 Training data generation  

Much of the complexity of the framework is in the 

generation of quality training data. This section describes 

how those simulated data are created for each type of 

application.  

2.1.1 Low thrust transfer general approach to 

training data generation 

A reference trajectory must be available for the 

spacecraft to follow. The reference trajectory can be 

generated by any means, as the training sample 

generation only requires the position and velocity over 

time. In this work, we use a proprietary tool to build an 

optimal trajectory with the following high-level steps:  

• Direct multiple shooting in circular-restricted 

three body problem (CRTBP) dynamics, with 

mesh refinement to add more nodes near lunar 

close approaches.  

• Indirect multiple shooting in the CRTBP with the 

smoothed minimum fuel objective function.  

• Convert solution in CRTBP to an ephemeris 

model.  

• Direct multiple shooting in the ephemeris model.  

• Indirect multiple shooting in the ephemeris 

model with the smoothed minimum fuel 

objective function.  

Training data are generated by first choosing a time 

𝑡∗  at random from the time span of the reference 

trajectory. At time 𝑡∗ the position and velocity are 

perturbed by some 𝛿𝑟  and 𝛿𝑣⃗  , drawn from random 

uniform distributions with lower and upper bounds 

𝑈(0, 𝛿𝑟max)  and 𝑈(0, 𝛿𝑣max) .The choice of 𝛿𝑟max and 

𝛿𝑣max define the a “training tube” size illustrated in 

Figure 2. 

 

 
Figure 2. Illustration of the “training tube” around 

the reference path, used for low-thrust trajectory 

corrections. 

With the training tube defined, the final step is to 

solve the fixed time TPBVP for the transfer back to the 

nominal trajectory at time 𝑡∗  +  𝛥𝑡. The time interval 𝛥𝑡 

is fixed and chosen for the problem, typically on the order 

of a few days or tens of days. The use of a receding 

horizon keeps the spacecraft close to the nominal path at 

all times, thus keeping the spacecraft within the training 

tube.  

A core element of this approach is the use of 

checkpoints at which the training samples are required to 

return to the reference path. This is illustrated in Figure 

3. We found that adding ~2-5 checkpoints with fixed final 

times helped guide simulated spacecraft to stay on a fuel-

optimal trajectory. Checkpoints are added immediately 

prior to sensitive events such as a flyby (when small state 

errors can be hard to recover from) or the start of a long 

thrust arc (when the control authority to respond to 

anomalies is more limited). 

 

 
Figure 3. Illustration of checkpoints with the 

“training tube”. All training samples leading up to a 

checkpoint epoch are required to return to the nominal 

at the checkpoint, rather than at a receding time horizon. 

Training samples can now be generated with indirect 

single shooting. Partial derivatives for the trajectory 

solver are computed via automatic differentiation, which 

allows the trajectory to be solved to numerical precision. 

An example of the training tube is given in Figure 4.  
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Figure 4. Example training tube around an arbitrary 

section of a nominal transfer. 

2.1.2 Cislunar low thrust transfer training 

data generation  

The Earth-Moon system was chosen due to its 

sensitive dynamics which makes learning accurate 

corrections more difficult. Algorithms developed for this 

dynamical environment will necessarily work for simpler 

dynamics. Initial tests were conducted using the CRTBP 

and then extended to a point-mass ephemeris model using 

the JPL DE430 ephemeris. 

The test transfer is from an Earth-Moon NRHO 

(Gateway’s planned orbit) to a larger Earth-Moon L2 

halo orbit. The nominal transfer’s time of flight is 24 

days. The spacecraft has an initial mass of 1,000 kg and 

a maximum thrust of 300 mN with an Isp of 2,000 sec. 

This hypothetical spacecraft propulsion system is 

equivalent to the high end of currently-feasible thrust-to-

weight ratios of electric propulsion (EP) spacecraft. The 

maximum thrust is limited to 240 mN for the nominal  

transfer to build in margin for recovery from errors. The 

nominal transfer requires 5.4 kg of propellant. Spacecraft 

thrusting is not allowed within a radius of 20,000 km 

from the Moon to avoid the additional operational 

complexity of a powered lunar flyby. The trajectory is 

defined in the Moon-centered J2000 inertial frame. The 

example NRHO to 𝐿2 transfer is shown in Figure 5. In 

addition, the nominal transfer’s thrust profile is computed 

as in Figure 6. 

The nominal transfer and all NN training trajectories 

are modeled with the point mass gravity of Earth, Moon, 

and Sun from the DE430 ephemeris. The spacecraft 

specific impulse (Isp) and maximum thrust are assumed 

constant throughout the nominal transfer.  

The training tube for this transfer is defined as 𝛿𝑟 =
500 𝑘𝑚  and 𝛿𝑣 = 5 𝑚/𝑠  relative to the nominal 

trajectory. Training samples return to the nominal 

trajectory after 4 days or at the next checkpoint epoch, 

whichever is earlier. 

 

 

 
Figure 5. NRHO to 𝐿2 nominal low thrust transfer, 

viewed in the Earth-Moon rotating frame. 

 
Figure 6. Nominal thrust profile vs. time for NRHO 

to 𝐿2transfer. 

 

2.1.3 Interplanetary low thrust transfer 

training data generation  

The same method for training sample generation is 

also applied to an interplanetary, heliocentric transfer. 

For this transfer, a solar electric propulsion model is used 

to provide realistic spacecraft control authority. The 

nominal transfer consists of an Earth launch, Mars flyby, 

and finally Mars rendezvous, of which only the first leg 

(Earth to Mars flyby) will be used to train the neural 

network. This leg was designed with a duty cycle of 80%, 

has a time-of-flight of 290 days, and has a total mass drop 

of approximately 64.5 kg. The transfer uses near bang-

bang control to model real-world operations. The force 

model used for the nominal trajectory and all NN 

trajectories includes the point mass gravities of Earth, 

Jupiter, Mars, and the Sun from the DE430 ephemeris.  

Figure 7 illustrates a heliocentric inertial view of the 

nominal interplanetary trajectory on which the 

framework was trained. 



73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.  

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-22- C1,3,3,x73038                          Page 5 of 12 

 

 
Figure 7. Sun-centered, inertial view of nominal 

transfer. 

The available thrust is a function of a realistic power 

model. The power available to the electric propulsion 

engine is inversely proportional to the square of the 

distance from the Sun, with a maximum of 3 kW at 1 AU. 

The engine model has a fixed Isp and jet efficiency (1500 

s and 50%, respectively) and includes losses for regulator 

efficiency, off-pointing, solar cell degradation, and bus 

power requirements. The thrust curves for the 

interplanetary transfer are given in Figure 8. 

 

 
Figure 8. Available and nominal thrust used by 

interplanetary transfer. 

Training samples for the NN are continuously 

generated in a defined region around the nominal transfer 

according to the “training tube” described previously. For 

this problem, we generated 150,000 samples between the 

start and end of the nominal transfer in a uniform 

distribution up to 5,000 km and 50 m/s in position and 

velocity magnitude, respectively. The single shooting 

algorithm then solves for the minimum fuel, smoothly-

varying-thrust costate solution that allows each sample to 

rendezvous with the nominal transfer either 30 days later 

or at the end of the transfer, whichever is sooner, from 

the sample epoch.  

2.1.4 GEO station keeping training data 

generation 

The GEO station keeping problem is based on the 

idea of keeping a spacecraft within an operational slot 

defined by latitude and longitude bounds. Perturbations 

from solar and lunar point mass gravities, solar radiation 

pressure, and the non-uniformity of Earth’s gravitational 

field cause a GEO spacecraft to drift in the longitudinal 

and latitudinal directions from its nominal nadir location. 

The effects of these perturbations are illustrated in Figure 

9. 

 
Figure 9. Natural longitudinal and latitudinal drift 

due to perturbations. 

Autonomous maneuver planning for GEO spacecraft 

has been studied extensively in literature [6], [7]. 

However, existing strategies rely on linearized dynamical 

models or approximate optimization methods. Neural 

Networks provide a means for on-board maneuver 

correction without over-simplifying the problem.  

GEO station keeping using chemical propulsion 

consists of two separate maneuver types: an east-west 

maneuver that corrects longitudinal drift and a north-

south maneuver that corrects latitudinal drift. The 

maneuvers are described in the Velocity-Normal-

Binormal (VNB) local frame. East-west maneuvers are 

performed solely in the velocity direction which 

increases or decreases the orbit semi-major axis, 

consequently decreasing or increasing the orbit angular 

speed and causing the spacecraft to drift westward or 

eastward, respectively. Eventually, the influence of the 

orbit perturbations creates a turnaround point, at which 

the spacecraft begins drifting in the opposite direction.   

For a spacecraft that experiences a natural eastward 

drift, an optimal east-west maneuver places the 

turnaround point at the westerly boundary of the 

operating slot in order to maximize the time between 

maneuvers. North-south maneuvers return the inclination 

of the orbit to zero. Maneuvers that only change 

inclination require a component in both the velocity and 

orbit normal directions. However, for this application, the 

north-south maneuvers consist of a burn solely in the 

orbit normal direction. Performing such a maneuver 

causes a deviation from the nominal orbit semi-major 

axis and, consequently, an east-west maneuver frequently 

immediately follows a north-south burn. Experience has 
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shown that a NN can more easily learn the north-south 

maneuvers when the problem is structured this way. An 

example EW maneuver is shown in Figure 10.  

 

 
Figure 10. An example east-west maneuver – the 

spacecraft (originally blue) approaches the easterly 

boundary of the operational box (30.05°) causing a 

maneuver to be performed. The spacecraft (now red) is 

propagated to the turnaround point near the westerly 

boundary of the box (29.95°).  

For this problem, the spacecraft is initialized in GEO 

with a nadir point of 30° East and 0° North and an epoch 

of 29373 UTC MJD. The operational slot is defined with 

longitudinal and latitudinal bounds of ±0.1° to model 

realistic application. To generate samples, a targeting 

scheme in GMAT delivers the optimal station keeping 

maneuvers for the nominal GEO spacecraft over ten 

years. Additional samples are created by perturbing the 

initial state off the nominal and again finding the optimal 

station keeping history for ten years. The perturbed initial 

states consist of combinations of initial epoch, latitude, 

and longitude values in the ranges of [29373, 29391 UTC 

MJD], [-0.3, 0.3°], and [29.96,30.02°] respectively.  

A separate NN is trained for each maneuver type. The 

input layer of the NN takes 14 quantities: the spacecraft’s 

latitude, longitude, Cartesian velocity components in an 

Earth-centered Earth-fixed (ECEF) frame, longitude rate, 

orbit eccentricity, and the Cartesian position components 

of the Moon and Sun in an Earth centered inertial (ECI) 

J2000 frame. The longitude rate is found by taking the 

difference of the Earth’s rotation rate and the spacecraft’s 

mean motion. The output layer of the NN is a single 

quantity: the burn magnitude of the appropriate 

maneuver. A NN with three hidden layers of 30 neurons 

each and these input and output layers (total of 3,271 

learned NN weights) is capable of learning both 

maneuver types well.   

To evaluate the performance of the NN, it is desirable 

to propagate a GEO spacecraft in GMAT using a high-

fidelity environment. However, the NN is built and 

trained using the Julia language and GMAT lacks a built-

in interface with Julia. In order to pass the NN 

evaluations to GMAT, a TCP socket is used to send 

information between a Julia script, which evaluates the 

NN, and a Python script, which interfaces with the 

GMAT API.  

A GEO spacecraft, with an initial state at 29373 UTC 

MJD and a sub-satellite point of 30° East and 0° North, 

is propagated using the above simulation scheme for 10 

years. The spacecraft is propagated in GMAT until an 

EW or NS station keeping maneuver is required. A 

Python script collects the end state using the GMAT API 

and sends the state to Julia over the TCP socket. A Julia 

script then determines which maneuver type is required, 

evaluates the correspond NN, and sends the burn 

magnitude over the socket to Python. Python then 

reinitializes the GMAT simulation with the previous end 

state and corresponding burn. GMAT performs the NN 

burn before again propagating until the next maneuver. 

To make the simulation more realistic, navigation and 

thruster errors are simulated. The navigation error is 

modeled as Gaussian noise 𝒩(0, σ2) where σ is the 

standard deviation according to the values given in Table 

1. 

 

Table 1. GEO simulation setup. 

State Component 𝜎 

Latitude (deg) 5e-5 

Longitude (deg) 5e-5 

Cartesian velocity 

components (cm/s) 
1 

Eccentricity 1e-6 

Orbit period (seconds) 0.5 

 

The thruster error is modeled at 2% for this 

simulation. The Moon and Sun Cartesian positions in the 

ECI frame are obtained through JPL’s SPICE toolkit and 

thus no error is applied to these values.  

 

2.1.5 NRHO station keeping training data 

generation 

Within the Cislunar system, the station keeping 

problem was also analyzed using the framework. The 

authors specifically chose to test the framework to 

simulate station keeping within an NRHO due to its 

relevance for the upcoming NASA Lunar Gateway. 

NASA’s upcoming Lunar Gateway is planned to operate 

in a southern L2 NRHO. The orbit has close approaches 

to the lunar surface allowing low-cost access to the lunar 

surface and consistent line-of-sight with Earth ground 

stations. The orbit is phased such that it avoids all total 

Earth eclipses [8]. Advanced Space’s CAPSTONE 

mission launched on June 28, 2022 and will demonstrate 

operations within the same NRHO that will be used by 

the Gateway.    

Existing station keeping strategies for the designated  

NRHO target a velocity vector component in the Earth-

Moon rotating frame and a time of perilune passage 

several revolutions downstream of a given state. 
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Targeting the velocity component in the 𝑥̂ direction (𝑣𝑥) 

at perilune passage 6.5 revolutions downstream is 

currently favored as it delivers a minimum Δ𝑉 and 

maintains the NRHO near its reference. The planned 

station keeping strategy for CAPSTONE follows the 

strategy planned for Gateway: perform an orbital 

maintenance maneuver (OMM) up to once every 

revolution that targets both 𝑣𝑥  and 𝑇𝑝  at an osculating 

true anomaly of 200° [9]. The 𝑣𝑥 used for targeting is the 

velocity in the 𝑥̂  direction of the Earth-Moon rotating 

frame at perilune. This 𝑣𝑥  and the time of perilune 

passage (𝑇𝑝) are compared to those of the reference orbit. 

When 𝑇𝑝 is within a given threshold, the maneuver only 

targets 𝑣𝑥.  

  
Figure 11. Maneuver location on NRHO viewed 

from the Y-Z plane of the Earth-Moon rotating frame. 

Training samples for the NN are generated by 

perturbing the six-dimensional state of the orbit at each 

OMM epoch for the full reference period (15 years, up to 

2035). At each OMM epoch, the reference state is 

determined from ephemeris and 500 samples are 

generated by perturbing the position and velocity vectors 

such that they form a uniform spherical distribution with 

3σ of 3,000 km and 30 cm/s respectively. For each 

sample, the corresponding station keeping maneuver that 

targets VX and TP 6.5 revolutions downstream is 

designed using the Jet Propulsion Laboratory’s Monte 

library. The OMM is designed using a realistic dynamical 

model with the forces modeled in Table 2 through Table 

4. 

 

 

 

 

 

Table 2. Point masses used for NRHO dynamics. 

Point Masses  

Sun 

Mercury 

Venus 

Mars Barycenter 

Jupiter Barycenter 

Saturn Barycenter 

Neptune Barycenter 

Uranus Barycenter 

Pluto Barycenter 

 

Table 3. Spherical harmonics used for NRHO 

dynamics. 

Body Dataset Order 

Earth GGM03C 16 

Moon GL900D 16 

 

 

Table 4. Solar Radiation Pressure parameters for 

NRHO dynamics. 

Parameter Value 

Flat Area (𝑚2) 0.6 

Mass (𝑘𝑔) 25 

𝐶𝑟   1.5 

 

A single feedforward neural network is trained for 

all OMM epochs. The NN consists of two hidden layers 

each with 40 neurons. The input layer has a size of 42 

consisting of:  

• the six-dimensional perturbed sample state, six-

dimensional reference state,  

• six-dimensional error vector between the 

perturbed and reference states,  

• three-dimensional relative spacecraft-Sun 

position vector in the synodic frame,  

• three-dimensional relative spacecraft Earth 

position vector in the synodic frame,  

• three-dimensional vector of Euler angles 

describing the Moon orientation in inertial space,  

• six-dimensional perturbed state 6.5 revolutions 

downstream,  

• six-dimensional reference state 6.5 revolutions 

downstream,  

• the 𝑣𝑥 difference between the perturbed state and 

reference 6.5 revolutions downstream, and  

• the 𝑇𝑝 difference between the perturbed state and 

reference 6.5 revolutions downstream.  

The output layer has a size of three consisting of the 

impulsive three-dimensional maneuver vector in the 

Earth-Moon rotating frame. In total, there are 3,483 

learned NN weights.  
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2.1.6 TCM training data generation  

As mentioned in section 2.1.5, Advanced Space’s 

CAPSTONE mission will demonstrate operations within 

the same NRHO that will be used by the Gateway. In 

order to reach and eventually insert into the target 

NRHO, CAPSTONE follows a ballistic lunar trajectory 

(BLT), a fuel-efficient path that leverages the Sun’s 

gravity to increase radius of periapsis and inclination. 

Along the BLT, several trajectory correction maneuvers 

(TCMs) occur to clean up launch vehicle insertion errors, 

maneuver errors, and navigation errors. Nominally, five 

TCMs will occur along the BLT but the exact number can 

increase to eight depending on vehicle parameters, 

insertion errors, maneuver errors, and navigation errors.  

The TCMs are designed using a three-burn 

optimization process [10]. When designing any given 

TCM n, the backpropagated state from the NRHO at the 

next TCM n+1 epoch is targeted and the total ΔV of 

TCM n, TCM n+1, and the NRHO Insertion Maneuver 

(NIM) is minimized. For example, when designing 

TCM1, the total ΔV of TCM1, TCM2, and NIM is 

minimized while the targeted state is that of the reference 

trajectory at the time of TCM2. Nominally, TCM1 

through TCM5 are designed in this manner with TCM5 

also designing an optional TCM6. Additionally, if 

TCM1, which cleans up initial launch errors, is above a 

threshold defined by the spacecraft parameters then 

optional maneuvers TCM1b and TCM1c are also 

designed. The approximate locations of the TCMs for a 

representative BLT are given in Figure 12. 

 

 
Figure 12. Approximate locations of nominal TCMs 

for a given BLT [10]. 

TCM training data is generated via Monte Carlo 

simulation of the operational maneuver design process. 

Realistic state errors are sampled relative to the reference 

trajectory at each pre-planned TCM epoch, then the 3-

burn optimization described above is carried out to 

generate the Δ𝑉 vector corresponding to the state error.  

For this test case, the training dataset only includes 

the nominal TCM1 through TCM5. Any TCM1 

maneuver that is over 20 m/s, and would normally require 

a secondary TCM1 burn, is filtered from the dataset 

before training. A BLT reference trajectory 

corresponding to a previously designed Trajectory 

Interface Point (TIP) of June 2, 2022, and the 

corresponding TCM maneuver schedule is used to 

determine the reference TCM states. Sample states are 

generated by uniformly perturbing each TCM reference 

state in position and velocity such that they form a 

spherical distribution. At each sample state the 

corresponding TCM is designed using the 

aforementioned process. The TCM design, and later 

simulation, is performed in the realistic dynamical model 

identical to the NRHO dynamics outlined in Table 2 

through Table 4. 

A separate feedforward NN is used to learn each of 

the five nominal TCMs. The NN consists of three hidden 

layers with 30 neurons each. The input layer is of 

dimension 30 consisting of the six-dimensional perturbed 

sample state, six-dimensional reference state, six-

dimensional error vector between the perturbed and 

reference states, six-dimensional relative spacecraft-Sun 

state vector in inertial space, and six-dimensional relative 

spacecraft-Earth state vector in inertial space. The output 

layer is of size four consisting of the TCM burn duration 

and three-dimensional unit direction vector. In total, 

there are 2,914 learned NN weights. 

 

2.2 Machine learning framework  

Based on experience from Parrish [5], we chose to use 

the Levenberg-Marquardt (LM) optimization algorithm. 

NNs are trained using a custom version of the Levenberg-

Marquardt (LM) algorithm. At each iteration, the LM 

algorithm computes the Jacobian of all training samples 

with respect to all trainable parameters and uses this to 

adjust the trainable parameters to minimize the sum of 

squared errors. When the objective is to minimize the 

sum of squared errors, the Jacobian can be used to 

accurately approximate the Hessian as well, leading to 

second-order convergence on the optimal NN weights. 

The LM algorithm is suited for regression problems with 

NNs containing up to tens of thousands of weights. It is 

not used for classification problems such as natural 

language processing or image recognition because those 

require NNs with millions or even billions of weights. 

Use of the LM training algorithm on such a large NN 

would require computing an excessive number of partial 

derivatives and is thus computationally intractable. For 

small NNs, such as those commonly used in regression 

problems, the LM algorithm has been found to converge 

orders of magnitude faster than methods that only 

compute a vector gradient. 

The LM algorithm makes updates to the weights as 

follows:  

𝑊′ = 𝑊 − (𝐽𝑇𝐽 + 𝜇𝐼)−1(𝐽𝑇𝑒) (9) 

where 𝑊 is the vector of model weights, 𝐽 is the Jacobian 

of model outputs with respect to model weights, 𝐼 is an 

appropriately-sized identity matrix, 𝜇  is an adjustment 

factor to smoothly vary between 1st and 2nd order 

convergence, and 𝑒  is the vector of residuals (the 
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difference between the model output and the desired 

model output).  

At the start of this work, the only performant, 

publicly-available LM implementation was in MATLAB, 

and even that implementation was not capable of GPU 

acceleration. We traded all the available implementations 

and ultimately decided to write our own in the Julia 

language [11] with GPU acceleration via the CUDA.jl 

package [12]. Our implementation uses analytically-

defined partial derivatives that we developed and 

implemented with great regard to speed. The Jacobian 

matrix is strategically broken into sections, and each 

section is computed by a separate GPU thread. The 

performance bottleneck is the low-level cuBLAS matrix 

pseudo-inverse in equation 9.  

Our implementation is based on the work by 

Tomislav et al [13], particularly with regard to the 

automatic weight decay variation. Testing on a variety of 

problems has found this implementation to converge 

more quickly and robustly than naïve choice of the 𝜇 

parameter.  

 

2.3 ConOps for onboard implementation 

The proposed framework would be implemented on 

board a spacecraft as follows. First, ground operators 

design a nominal transfer from the current state to some 

target state, taking into consideration all necessary 

constraints. Then, the same ground software is used to 

solve tens of thousands of similar, perturbed transfers.  

The solution of each perturbed transfer results in a 

pair of input-output vectors: given the current state vector 

(and problem-specific additional context), return the 

primer vector (for continuous-thrust) or the Δ𝑉  vector 

(for impulsive maneuvers) corresponding to the optimal 

path to rendezvous with the target. The ground software 

then trains a NN to approximate the relationship between 

the input and the output.  

Since each of the perturbed trajectories is short and 

has a good guess from the nominal path, the perturbed 

optimal trajectories can be generated quickly. Proprietary 

trajectory optimization tools at Advanced Space can 

generate these training samples in a few hours on a 

modern workstation computer. If needed, the task can be 

parallelized to hundreds or even thousands of CPUs in a 

distributed computing environment to generate sufficient 

training samples within minutes.   

Once training samples are generated, the NN model 

is trained. The model is saved as a binary file dictating 

the shape of the model and the model weights, and the 

binary file is either loaded on the spacecraft prior to 

launch or uplinked to the spacecraft during flight.  

Trajectory corrections are made continuously over 

the course of an orbit transfer. The frequency of 

corrections is tunable for the mission, with tests here 

using a 10–60-minute update cadence.  

The spacecraft is assumed to perform onboard orbit 

determination which returns a state error signal. Example 

onboard orbit determination technologies include the 

Cislunar Autonomous Positioning System (CAPS) which 

is under development at Advanced Space [10] , GNSS, 

optical navigation, one-way ranging with an atomic 

clock, and other technologies in development. The 

spacecraft passes the best estimate of the current state 

into the NN model, which returns the costate vector or 

Δ𝑉 vector. The spacecraft numerically integrates the state 

forward in time to the next tick, with control held 

inertially fixed. Other elements of the FSW turn the 

control vector into thruster instructions which are 

executed to fly the trajectory. A schematic of the 

framework’s concept of operations is shown below in 

Figure 13. 

 

 
Figure 13. Schematic of onboard ConOps. 

 

3.  Results: Low Thrust Control 

To evaluate the performance of the NNs, a spacecraft 

is flown along the reference trajectory using the NNs to 

deliver trajectory corrections. The simulation propagates 

two spacecraft concurrently, a “truth” and a “predicted” 

spacecraft. The predicted spacecraft’s state is 

periodically updated to that of the truth, plus some 

navigation noise, according to a navigation frequency 

parameter. At a defined NN evaluation frequency, the 

predicted spacecraft’s state is used to evaluate the 

appropriate NN and deliver the desired control. To 

translate the costate outputs of the NNs to thrust 

commands, the NN is evaluated frequently, and the 

spacecraft thruster is only fired when the magnitude of 

the costate control law is above a defined threshold 

parameter. The truth spacecraft executes the desired 

control commands from the predicted spacecraft plus 

some thruster error.  
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3.1 Earth-Moon 3-body transfer  

The results from Monte Carlo simulation of a NRHO 

to 𝐿2  transfer with the proposed framework and 

simulated ground control are provided in Table 5, for a 

range of navigation-update cycle speeds. Historically, 

achieving a 2-day navigation and control update loop 

with human-in-the-loop control has required 24-hr 

coverage from operations teams and is only practical for 

short periods of critical operations. However, the speed 

of the control loop in space is limited only by the onboard 

navigation requirements. Once a state estimate is 

available for NNEP, it can update the thruster commands 

immediately. 

 

Table 5. Comparison of neural net framework and 

simulated ground control. 

Simulation type 

(nav update cycle) 

Final Error 

(km) 

Average 

Propellant (kg) 

NNEP 2-day 39 ±15 6.03±0.24 

NNEP 4-day  54±23 6.16±0.33 

NNEP 6-day  129±84 6.22±0.32 

Ground 2-day 22±11 6.1±1.1 

Ground 4-day 75±63 6.8±1.3 

 

3.2 Interplanetary transfer 

Table 6 shows the results for a 200-trial Monte Carlo 

simulation of the NNEP and ground control strategies for 

different navigation update frequencies. NNEP 

outperforms the ground control in terms of final error 

from the reference trajectory but uses slightly more fuel 

in the process. The NNEP software makes up for larger 

navigation errors with a nearly instantaneous navigation 

solution to control update cadence. 

 

Table 6. Neural net framework and human control 

comparison (N = 200). Data provided as  

mean ± standard deviation. 

Simulation type 

(nav update cycle) 

Final Error 

(km) 

Propellant 

use (kg) 

NNEP 8-day 167±19 64.46±0.09 

NNEP 16-day 205±60 64.50±0.10 

NNEP 28-day 184±62 64.49±0.10 

Ground 8-day 364±252 64.22±0.03 

Ground 16-day 525±321 64.25±0.06 

Ground 28-day 879±516 64.28±0.13 

 

4. Results: Impulsive Control  

4.1 GEO station keeping  

Results for the GEO station keeping trial show that 

the NN framework can deliver necessary station 

keeping maneuvers such that the spacecraft maintains 

its operational slot for the entire 10-year simulation 

time. The total Δ𝑉 for all maneuvers over 10 years using 

NNEP is 521.365 m/s. In comparison, a ground 

simulation, in which GMAT propagates the spacecraft 

and calculates optimal station keeping burns, results in a 

total Δ𝑉 of 520.481 m/s over 10 years. The NN delivers 

near optimal maneuvers instantaneously without the 

need for a human operator or optimization software.  

 

 
Figure 14. Motion of a GEO spacecraft in the ECEF 

frame propagated for 10 years using the NN for station 

keeping predictions. 

 

4.2 NRHO station keeping  

To evaluate the performance of the NN, a spacecraft 

in the defined NRHO is propagated for the full reference 

period (15 years) using the NN to deliver OMMs every 

revolution. The spacecraft is propagated in JPL’s Monte 

Python package. Since the NN is constructed and trained 

in the Julia language but the simulation occurs in Python, 

a TCP socket is used to pass information between a Julia 

script running concurrently with the Python simulation. 

Two spacecraft are simulated, a “NN” spacecraft that 

evaluates the trained NN for OMMs and a “truth” 

spacecraft that uses SNOPT and the aforementioned 

station keeping strategy to deliver OMMs. Both are 

initialized with the same state which is randomly 

generated and slightly off-reference. To make the 

simulation more realistic, navigation and thruster errors 

are simulated. The navigation noise is modeled as a 

uniform spherical perturbation to the six-dimensional 

spacecraft state with 3𝜎 of 1 km and 1 cm/s for position 

and velocity respectively. The thruster error is modeled 

as a uniform spherical distribution in direction with a 

random magnitude according to a uniform distribution 

with an upper bound of 2% of the maneuver magnitude. 

Results in Table 7 show that the NN can deliver 

sufficient OMMs such that the NN spacecraft remains in 

the vicinity of the reference NRHO for the entire 15-year 

reference period. A Monte Carlo analysis was performed 

by running the above simulation 100 times and collecting 

the results.  

The NN delivers OMMs to remain within the vicinity 

of the NRHO over 15 years without the need for a ground 

team to design maneuvers. The NN, while using slightly 

more total DV over the simulation time, outperforms the 

ground control in terms of error from the reference orbit. 

It should be noted that the amount of difference in Δ𝑉 
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between the NN control and ground control is negligible 

compared to effect of momentum desaturation 

maneuvers, which were not modeled here. 

 

Table 7. NN and ground truth control comparison (N = 

100). Data provided as mean ± standard deviation.  

Performance Metric  NN Control Ground 

Control  

Annual ΔV (m/s) 0.31 ± 0.04 0.25 ± 0.02 

Maximum position 

deviation (km) 
554 ± 33 780 ± 12 

 

 

4.3 TCM’s for CAPSTONE 

To evaluate the performance of the NN, a spacecraft 

is flown on the reference BLT using the NNs to deliver 

each nominal TCM. The spacecraft is propagated in 

JPL’s Monte Python package from TIP to TCM6. Since 

the NN is constructed and trained in the Julia language 

but the simulation occurs in Python, a TCP socket is used 

to pass information between a Julia script running 

concurrently with the Python simulation. To make the 

simulation more realistic, navigation error is simulated. 

The navigation noise is modeled as a uniform spherical 

perturbation to the six-dimensional spacecraft state with 

3𝜎  of 5 km and 5 cm/s for position and velocity 

respectively. 

Table 8 shows the results of a 200 trial Monte Carlo 

simulation of the CAPSTONE BLT with NNs delivering 

the necessary TCMs. The NNs can provide sufficient 

maneuvers such that the spacecraft remains close to the 

reference trajectory autonomously.  

 

Table 8. NN control Monte Carlo results (N = 200). 

Data provided as mean ± standard deviation. 

Performance Metric  NN Control 

Total ΔV (m/s) 83 ± 5 

Final position error (km) 372 ± 20 

 

5. Results: FSW implementation 

The on-board neural network inferencing 

functionality is designed to be platform independent. 

Thus, NASA’s cFS framework is used to host the neural 

network software. To maintain low-compute 

requirements, trained models are serialized and then 

uplinked to the on-board system. As model integrity and 

model relevance are key factors to nominal operations, 

the FSW is designed to allow for model uplinks to occur 

at any time to replace the current model. To handle off-

nominal exceptions during flight, the FSW is 

implemented with a standby mode as shown in Figure 15, 

allowing operators to provide recovery commands as 

needed without model evaluations. 

 

 
 

Figure 15. NNEP cFS App Order of Operations 

The FSW implementation is designed to be minimally 

intrusive for any spacecraft. We developed a custom 

inference engine that is highly memory-efficient. 

Profiling was carried out on a NN model representative 

of a low-thrust trajectory corrector. Profiling of model 

loading, de-serializing, and inference showed a peak 

memory use of 86.5 kB. Software dependencies are also 

minimal: the entire cFS app is dependent only on 

NASA’s CSPICE.  

The FSW has been simulated using a mock ground-

station to uplink models, send commands, and to receive 

telemetry. Tests were conducted with nominal and off-

nominal initial conditions, as well as with varying 

simulation durations. Furthermore, standby mode and in-

flight FSW reinitialization were also tested to ensure 

correct recovery behavior. The simulation results were 

compared with the non-FSW implementation simulation 

results and proved to be equivalent. We hope to be able 

to share more details of the FSW implementation in a 

future publication.  

 

6. Conclusion  

This paper presents a framework for autonomous and 

onboard maneuver planning in both low thrust and 

impulsive thrust spacecraft built upon NNs. To illustrate 

the NN’s ability to generate optimal control response in 

different dynamical regimes, simulations were conducted 

with both two- and three- body trajectories. To support 

the framework’s usability in flight, a concept of 

operations is designed to utilize the framework with data 

that would traditionally be available to the spacecraft and 

to ground operators.  
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The next contribution is the sample generation 

method for the NN.  To generate training samples for the 

NN, the sampling tube method is proposed where a 

nominal trajectory is designed and thousands of 

perturbed states are used to compute optimal return 

maneuvers to the reference trajectory.  With the neural 

networks trained for different tasks, simulation results are 

then presented for each maneuver design task in each 

dynamical environment.  

Finally, this paper also briefly summarizes a process 

by which the framework can be implemented onboard a 

spacecraft as a cFS application. Altogether, the proposed 

framework and findings from subsequent analysis aim to 

provide a highly generalizable architecture based on 

neural networks for automated and onboard maneuver 

planning in multiple dynamical environments.  
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