

Videoloft API for viewing live video, recording
and playing video events
Version 1.0.8

1.1Introduction

An IP camera or NVR/DVR channel set up with Videoloft can be used to stream live video and record video to the cloud.

Live Stream
To minimise network usage, a camera won't stream live video all the time, so you need to use our API to tell it to start
streaming. Once this has been done, you can then view live video for the next minute. To view for longer, just keep calling
the API every 30 seconds to keep the live stream running.

Recorded video
When videos are recorded to the Videoloft cloud in response to motion or triggered by an API call, we call these ‘Events’
in the Videoloft app and webviewer UI. As you'll see, in the API we also refer to these as Alerts, so hopefully that's not too
confusing.

It's also worth noting that we use the word 'devices' in the API, and this generally means a camera or recorder channel.

A device is always owned by a specific user, so we can identify a device using a uid.deviceid, e.g. 12345.17. In this example
the user id is 12345 and the device id is 17. Users can be given access to other user's devices, so for example, user 4321
may have access to view the camera 12345.17. At the moment, you need to contact Videoloft to set up multi-user access,
but in the future, we’ll have a UI to allow management of this.

Recorded video is delivered as H.264/AAC (codec) over HLS (transport protocol).

Some notes here are written assuming the API is used from the web because that's how we use it, but hopefully it can be
used from a Windows application too.

1.1.1 Server types

There are three main types of server required to view live and play events. These servers are hosted in the AWS cloud.

Authenticator
Calls are made to the authenticator to login as a user and get an authentication token. Once you have a valid token,
information about the cameras can also be retrieved from the authenticator. Note that tokens expire after 20 minutes.

There is a single authenticator DNS address per region which is linked to an auto scaling group of servers through a load
balancer. We currently have US and EU regions in production. Going to auth1.manything.com will automatically take you
to the 'nearest' region and redirect you to the region specified for the user account. Once you know the specific
authenticator to use, you should use that one directly - e.g. in the US, use useast1-auth-1.manything.com

Logger
Loggers are general purpose servers used to access data, images and video for cameras. Loggers aren't currently load
balanced, so a camera is allocated to a specific logger and will generally stay on that logger unless that server develops a
problem, or there is a significant change in system load. Each logger holds state information about the cameras which are
allocated to it.

Calls are made to the camera’s logger to get a list of events for that camera. Once you have a list of events, you can then
call the logger again to get thumb images and videos for specific events. You can also call the logger to send messages to
the camera, e.g. to tell the camera to start streaming live video. You need to supply a valid token to talk to loggers. The
token must be valid for the camera(s) that you want to access and the action(s) that you want to perform on those
cameras.

Wowza
Wowza servers are used for viewing live video streams. As with Logger servers, the Wowza servers aren't load balanced so
you need to use the Wowza server that is assigned to a specific camera to view live video from that camera. Cameras
sometime move to different Wowza servers, so before viewing live video, you should check that you have the latest
information about which Wowza server to use.

1.1.2 Overview for viewing live video

Calls to Authenticator:

1. Login as a user, get an authentication token /login
2. Get a summary list of devices that this user can view, including the camera names /devices
3. Work out which camera you want to view live on. e.g. based on user and camera name
4. Get detailed data for this device including the Wowza server to use and video stream name /devices/viewerInfo

Calls to Logger

1. Tell a camera to start streaming live video /sendcameratask with action=livecommand (keep calling this every 30
seconds to continue the video streaming)

2. Poll camera status e.g. to find out if it's streaming live video /cameras/status (when camera is streaming, status
live value will be set to true)

Calls to Wowza

1. Play live video from Wowza. Pass the Wowza URL with /playlist.m3u8 to your video player to play the HLS video.

1.1.3 Overview for recording an event video

Event videos are recorded automatically, e.g. when motion is detected, but you can also trigger the recording using the
API.

Keep sending a triggerevent action to a camera and it will continuously record video until about 20 seconds after you stop
sending the action.

Calls to Authenticator:

1. Login as a user, get an authentication token /login
2. Get a summary list of devices that this user can access /devices
3. Decide which device you want to record the event on
4. Get detailed data for that device including the logger server to use /devices/viewerInfo

Calls to Logger

1. Tell a camera to start recording video /sendcameratask with action=triggerevent - keep calling this every 15
seconds to continue the video recording

2. Just stop calling it when you want the recording to finish and it will finish 20 seconds after the last call. Note that if
there is motion detected after the last call, the recording will run on for longer and will finish about 20 seconds after
the motion stops. However, when you come to view the event later – the play-out will end 5 seconds after the last
motion trigger or the last cameraTask trigger.

1.1.4 Overview for viewing a recorded event video

Here's a summary of the process to play an event. Process will vary depending on how you want the UI to work, but here's
an example where the user wants to view events for one selected device.

Calls to Authenticator:

1. Login as a user, get an authentication token /login
2. Get a summary list of devices that this user can view /devices
3. User chooses the device they're interested in
4. Get detailed data for this device including the logger server to use /devices/viewerInfo

Calls to Logger

1. Get a list of 20 most recent events for this device /alert
2. Get thumb images for each of those events /alertthumb
3. Display thumb image along with time and duration of the event in the UI
4. User selects event to play
5. Form HLS video URL and play the video /alert.m3u8
6. If event that user wants to view isn’t within the 20 events displayed, call /alert again with an offset parameter to

get the next 20

Other key info

• Call /login e.g. every 15 minutes to refresh the authentication token
• Call /devices/viewerInfo every 10 minutes to make sure you have latest logger server details for a device
• In our UI, we show events in reverse order (newest first), if the user scrolls down to the end of the list of events,

call /alert with an offset to get the next 20 (older) events
• To reduce load on our servers and to speed up performance for the end user, you should cache the .TS video files

locally
• There are other APIs which enable you to build a date-picker for viewing events, if you wish to have access to

these API, please let us know

1.1.5 Notes for multi-user systems

If you’ve got a system where a logged in user has access to other users’ cameras, then there are some extra things to be
aware of.

• In a multi-user system, a logged in user can be set up to have access to other user’s cameras. This can be all their
cameras, or just a subset of cameras. There are two levels of access; read-only and admin. With read only access,
you can have access to see camera names, recorded and live video. With admin access, you can do additional
things such as change cameras settings and delete recorded video events.

• Setting up a multi-user system can save you having to login as each individual user to view their cameras. If you

have a single master user, you’ll then only need one username / password to access all the cameras that want
your system to access. At the moment, you’ll need to get in touch with Videoloft to get a multi-user system set
up, but in future we’ll have a UI to allow you to manage this yourself.

• When getting the summary list of devices from the Authenticator in step 2 in above examples you’ll see that the

devices are grouped by the uid of user that ‘owns’ those cameras. See /devices API spec below for more details
on the data format.

• If you want your UI to allow selection of a specific camera user to focus on, you can use the ‘alias’ value returned
in the /device data which will be the subscriber name for the camera user that was specified when creating the
user in the Videoloft Portal.

• The authentication token returned by /login will give the logged in user access to any of the devices, returned
from the /devices call. For example, if a user with uid 100 has read access to user 200’s cameras, then you logged
in as user 100, you could call <LOGGERSERVER>/alerturl.m3u8?uid=200.1… to view events from one of user 200’s
cameras.

1.2 Authenticator API

1.2.1 Login

Authenticates the user and returns a token

API Returns

GET /login

Initial web login with email and password

https://auth1.manything.com/login?email=<USEREMAIL>&
password=<USERPASSWORD>&caller=website

Parameters

• email: email address of account holder

• password

• caller: For initial web login, set to 'website'. Not
required for login from an application.

e.g.
https://auth1.manything.com/login?email=demo@mt.com
&password=manything&caller=website

Subsequent web login using cookies, so no password
needed

https://auth1.manything.com/login?caller=cookielogin

• caller: Set to 'cookielogin'

• The cookie from last login call will automatically be
sent from the browser

Important: Tokens will expire after 20 minutes, so you
need to call /login regularly to ensure that fresh tokens are
used.

 uid: id for the logged in user

authToken: Videoloft token to access resources in the APIs
below (expires after 20 minutes)

authenticator: The authenticator DNS name to make API
calls to (based on region of user)

Also returns cookies if caller='website' or 'cookielogin'.

Returns a lot of other data, but we don't need that for
viewing events. In particular, please ignore the devices data
as we have a new way to get that data calling /devices.

Example return

{

 "result":{

 "uid":12345,

 "devices":[

 {

 "id":2,

 "phonename":"Elm 5 iPhone 5 iOS8",

 "streamname":"341025.2_932950-nr",

 "wowza":"uswest2-wowza-1539961359-i-

05490f5803c3c88ff.manything.com",

 "logger":"uswest2-logger-1515079812-i-

06551d700ae2c0ea2.manything.com",

 "is_camera":1,

 "device_type":null,

 "language":"en-GB",

 "phoneid":"0CD580FE-2F35-4FB3-8A44-

8B3B2E2CA5DA"

 },

 {

 "id":10,

 "phonename":"Birch 9 iPhone 7 iOS 10",

 "streamname":"341025.10_79661-nr",

 "wowza":"uswest2-wowza-1537199246-i-

00e769f0ad1f1faa4.manything.com",

 "logger":"uswest2-logger-1515079812-i-

06551d700ae2c0ea2.manything.com",

 "is_camera":1,

 "device_type":null,

 "language":"en-GB",

 "phoneid":"1C883862-3C8D-46AA-A116-

55BDF68B79B5"

 }

],

 "accountInfo":{

 "maxAge":1,

 "maxDevices":1,

 "type":"free",

 "provider":"installer"

 },

 "time":1540810542812,

 "region":"uswest2",

https://auth1.manything.com/login?email=%3cUSEREMAIL%3e&password=%3cUSERPASSWORD%3e&caller=website
https://auth1.manything.com/login?email=%3cUSEREMAIL%3e&password=%3cUSERPASSWORD%3e&caller=website
https://auth1.manything.com/login?email=demo@mt.com&password=manything&caller=website
https://auth1.manything.com/login?email=demo@mt.com&password=manything&caller=website
https://auth1.manything.com/login?caller=cookielogin

"authToken":"MzQxMDI1OjE1NDA4MTA1NDI6MTIw

MDowOkwsVyxB*do-

tI6nPBpo9evgs4dVQkkZhJFXizpAm32KlFqNWL_cK_oO

TGi2Obr-gl-

1YLrdMGRrRSgX6lzHxf4RxsBzoNq7B5yXivlYiEU6f1oB

cV7_NHrpjDlWKW7d0UDEOLSTA1HJqy8_srMl0_0Uoni

PawAXuNKs6QJC-ncMPz7oTw.",

 "authenticator":"https://uswest2-auth-

1.manything.com",

 "disableUpgrades":false,

 "paymentServer":"https://uswest2-

payment.manything.com",

 "forceRom":true,

 "installerid":null,

 "distributorid":null,

 "ipcamDiscoveryEnabled":true,

 "managementType":null,

 "managementScope":null,

 "chunkLengthInBC":60,

 "chunkLengthInAlert":60,

 "backlogThresholdStopRecording":1000000,

 "backlogThresholdDropLevel":1000000,

 "backlogThresholdDropToRoM":5,

 "minAppVersion":"4.0.0 (788)",

 "romAlertAdjustment":4,

 "videoUploadOrder":"ASC",

 "keepRecordingDefault":1,

 "chunkLengthPreIOS8":120,

 "showUpdatePopup":true,

 "hideUpdatePopupAfter":12,

 "continuousAlertAdjustment":4,

 "defaultToRoM":true,

 "timeOfNoTriggersToEndAlert":20,

 "emailWhenOffline":1,

 "notificationWhenOffline":1,

 "maxLengthOfTalkbackAudio":10,

 "minGapBetweenTalkbackAudioPlayback":1,

 "fallbackToLoggerUploads":false,

 "showWorkForManythingLink":false,

 "numOfFreeMotionEvents":0,

 "email":"a@b.com"

 }

}

1.2.2 Get list of all devices that a logged in user has access to

Get basic info for all devices that a specific user has viewer access to.

A logged in user will always have access to cameras created directly under their account. They may also have been given
access to other users' cameras. A user may therefore have access to hundreds or even thousands of cameras, so we
initially just get the basic information for those cameras, like the id, phone name and name (alias) of the user that owns a
camera.

API Returns

GET /devices

curl -w '\n' -v "<AUTHSERVER>/devices" -H

 All the devices that the user (from the authToken) has
access to.

Looking at the example return data below, this is what that
data means:

"Authorization: ManythingToken

<AUTHTOKEN>"

Parameters

• AUTHSERVER: can use the value of 'authenticator'
that was returned from /login, e.g. For test users,
this is usually 'https://uswest2-auth-
1.manything.com'

• AUTHTOKEN: is the value of authToken returned
from /login

e.g.

curl -w '\n' -v "https://euwest1-auth-

1.manything.com/devices" -H

'Authorization: ManythingToken

ODI3MDI5OjE1NjU4NzM2MTQ6MTIwMDozO

kwsVyxB*KfSCwnMCUa1g63_RotjgCU20T

cMsf-T8JYTYDPcNjb19_7SJkSLoTuVTkR

pERMFkBofex-AicMKZWXyRHlTHrKWZDsn

gePI2xuwd0T8795sG0gab8Ekjjs5NMfXI

fwuwwz6pZXTSbrNBz69HvbmNXF7vppkG6

Gjzco32aoPFI.'

• "329475": or "400123": The uids of the users that
own the devices contained within this section. In this
example the logged in user has access to cameras
within two users account.

• devices: Contains one or more devices owned by the
above users

• "56" The device id

• uidd: uid.deviceid for the device

• phonename: The Videoloft specified phone name for
this device, can be different from the Hikvision
specified camera name

• permissions: r= read only, a= admin

• alias: Subscriber name of the user that owns the
devices

Example return

{

 "result":{

 "329475":{

 "devices":{

 "56":{

 "uidd":"329475.56",

 "phonename":"Room 1",

 "permissions":[

 "r",

]

 },

 "59":{

 "uidd":"329475.59",

 "phonename":"Garden",

 "permissions":[

 "a"

]

 }

 },

 "alias":"Customer 1"

 }

 },

 {

 "400123":{

 "devices":{

 "1":{

 "uidd":"400123.1",

 "phonename":"Kitchen",

 "permissions":[

 "r",

]

 },

 "2":{

 "uidd":"400123.2",

 "phonename":"Hall",

 "permissions":[

https://uswest2-auth-1.manything.com/
https://uswest2-auth-1.manything.com/

 "a"

]

 }

 },

 "alias":"Customer 2"

 }

 },

 "errors":[

 {

 "1.1":"Unauthorized"

 }

]

}

1.2.3 Get more details for a subset of devices

When viewing events, our current UI allows you to explore the events for one device at a time. In this case, you would put
up a list of available cameras and let the user select a single camera to view events for. You can then get more details
about that specific camera.

For event viewing, the key thing we need to know about the selected device is which logger server the device is using. So
for this case, call /devices/viewerInfo with a single uidd.

Call this every 10 minutes to get latest values, e.g. to see if a camera has been moved to a new logger.

API Returns

GET /devices/viewerInfo

curl -v -w "\n" -H "Authorization: ManythingToken

<AUTHTOKEN>"

<AUTHSERVER>/devices/viewerInfo

?uidd=329475.56&uidd=329475.59&

uidd=400123.1

Parameters

• AUTHSERVER: can use the value of 'authenticator'
that was returned from /login, e.g. For test users,
this is usually 'https://uswest2-auth-
1.manything.com'

• AUTHTOKEN: is the value of authToken returned
from /login

• uidd: You can specify 1, or n uidds (up to the URL
length limit)

e.g.

curl -v -w "\n" -H 'Authorization:

ManythingToken ODI3MDI5OjE1NjU4NzM

2MTQ6MTIwMDozOkwsVyxB*KfSCwnMCUa1g

 Need to get initial values for Logger from here

Similar format to /devices as above, but has additional
data, e.g. logger, Wowza and streamname.

Example return

Has data for two camera from user 329475 and one camera
from user 400123

{

 "result":{

 "329475":{

 "devices":{

 "56":{

 "uidd":"329475.56",

 "phonename":"Room 1",

 "permissions":[

 "r",

 "w"

],

 "wowza":"uswest2-wowza-1539961359-i-

05490f5803c3c88ff.manything.com",

 "logger":"uswest2-logger-1540310790-i-

0f24403219cd83749.manything.com",

 "cloudRecordingEnabled":1,

 "appVersion":"2.24.2",

 "deviceType":"ipcam201701",

 "streamname":"329475.56_39039-nr",

 "language":"en-GB",

 "phoneid":"DS-2CD2042WD-

I20161005BBWR653544863"

https://uswest2-auth-1.manything.com/
https://uswest2-auth-1.manything.com/

63_RotjgCU20TcMsf-1T8JYTYDPcNjb19_

7SJkSLoTuVTkRpERMFkBofex-AicMKZWX

yRHlTHrKWZDsngePI2xuwd0T8795sG0ga

b8Ekjjs5NMfXIfwuwwz6pZXTSbrNBz69H

vbmNXF7vppkG6Gjzco32aoPFI.'

https://euwest1-auth-

1.manything.com/devices/viewerInfo

?uidd=329475.56&uidd=329475.59&

uidd=400123.1

 },

 "59":{

 "uidd":"329475.59",

 "phonename":"Garden",

 "permissions":[

 "a"

],

 "wowza":"uswest2-wowza-1539961359-i-

05490f5803c3c88ff.manything.com",

 "logger":"uswest2-logger-1540310790-i-

0f24403219cd83749.manything.com",

 "cloudRecordingEnabled":1,

 "appVersion":"2.24.2",

 "deviceType":"ipcam201701",

 "streamname":"329475.59_94213-nr",

 "language":"en-GB",

 "phoneid":"DS-7204HUHI-

K10420180126CCWRC04758466WCVU@01"

 }

 }

 },

 "400123":{

 "devices":{

 "1":{

 "uidd":"400123.1",

 "phonename":"Kitchen",

 "permissions":[

 "r"

],

 "wowza":"uswest2-wowza-1539961359-i-

05490f5803c3c88ff.manything.com",

 " logger":"uswest2-logger-1540310790-i-

0f24403219cd83749.manything.com",

 "cloudRecordingEnabled":1,

 "appVersion":"2.24.2",

 "deviceType":"ipcam201701",

 "streamname":"400123.1_67012-nr",

 "language":"en-GB",

 "phoneid":"DS-2CD2077WD-

I20161005BBWR653542311"

 }

 },

 }

}

1.3 Logger API

1.3.1 Get event data for a device

API Returns

GET /alert

There may be hundreds or thousands of events recorded
by a camera, so we request the details for these in small
batches, requesting more data as the user scrolls through
the list.

Get data for the first 20 events

 Return value you'll need for event viewing:

• alert: Id of the alert

• startt: Start time of the event in milliseconds (UTC)

• endt: End time of the event in milliseconds (UTC)

<LOGGERSERVER>/alert?uid=599.63&startt=1&offset=
&limit=20&maxage=604800000&token=<AUTHTOKEN>

Parameters

• LOGGERSERVER: is the Logger server that a specific
device is assigned to. Get the value from
/devices/viewerInfo call above.

• AUTHTOKEN: is the value of authToken returned
from /login

• uid: uid.deviceid for the device. e.g.599.63

• startt: start time in milliseconds of the event range
(to keep things simple, set to 1)

• offset: Only return results after this offset in the
overall list, e.g. '0' if want to get events from start of
list, '20' if want to get next 20 results

• limit: How many events to return from the overall
list

• maxage: Use this so that the request only returns
events that the user's plan allows, this value is set to
the user's cloud storage allowance in milliseconds,
e.g. 604800000 would be used for a 7 day cloud
storage plan

For maxage, first get accountInfo.maxAge from the
/login response, which will be in days. Multiply by
1000x60x60x24 to make it milliseconds.

• token: Videoloft token from login

Get next 20

<LOGGERSERVER>/alert?uid=599.63&startt=1&offset=20
&limit=20&maxage=604800000&token=<AUTHTOKEN>

Note: We use max age to make sure we don't show events
where the video has been auto deleted in line with the
user's storage plan. For a 7 day storage plan, we actually
store 9 days of video so the user can pay to upgrade and
see an additional 2 days. We auto delete the database
entries and the actual videos on separate schedules, so we
may have 10 days of events in the database, but only 9
days of video.

• type: What triggered the event, can be 'motion' or
'audio'

• smx: Magnitude of the motion. Hex number, ranges
from 00 to 0a

• aud: Magnitude of the sound. Hex number, ranges
from 00 to 0a

• tz: Time zone offset for this device, measured in
hours. Can be +ve or -ve. Can be used to adjust time
displayed in UI to camera's local time.

• rom: Set to 1 if event was recorded in 'Record on
motion mode', which is the default. Will be 0 if
camera was in 24/7 continuous recording mode.

Also returns these, but not needed for Event viewing.

• deviceid: Device id, so in this example will just be the
device id passed in as part of uid.

• startval: Raw data received from camera.
Example return

Two events are returned in the example below.

{
 "result": [
 {
 "startt": 1540567150000,
 "deviceid": 63,
 "startval": "{"tz":1,"t":"motion","smx":"07",
"id":1540567150,"hasvideo":0,"rom":1,"e":"start",
"max":"00000000000000000000000000000000
000000000000000000000000000000000000001
e000000000000000000050000000000000000
000000000000","aud":null}",
 "alert": 1540567150,
 "rom": 1,
 "smx": "07",
 "aud": null,
 "tz": 1,
 "type": "motion",
 "has_hdstill": 0,
 "endt": 1540567157091
 },
 {
 "startt": 1540567090000,
 "deviceid": 63,
 "startval":
"{"tz":1,"t":"motion","smx":"07","id":1540567090,"hasvide
o":0,
"rom":1,"e":"start","max":"000000010000000
0000000000000010100000100000000000001
0000000000000000001e00000000000000000
0080000000000000000000000010000","aud":null}",
 "alert": 1540567090,

 "rom": 1,
 "smx": "07",
 "aud": null,
 "tz": 1,
 "type": "motion",
 "has_hdstill": 0,
 "endt": 1540567097000
 }
]
}

1.3.2 Get alert thumbs

Returns a thumb image for the specified alert

API Returns

GET /alertthumb

<LOGGERSERVER>/alertthumb/uidd/alertid/<AUTHT

OKEN>

e.g.

<LOGGERSERVER>/alertthumb/12345.63/154056593

0/ <AUTHTOKEN>

Parameters

• LOGGERSERVER: is the Logger server that a specific
device is assigned to, get the value from
/devices/viewerInfo call above

• AUTHTOKEN: is the value of authToken returned
from /login

• uidd: uid.device id for a specific device e.g. 12345.63

• alertid: is the id of the alert, which is returned from
/alert

This call just returns the image, there is no additional data.

Call can be used from the web, so the image is displayed
directly into a HTML element.

1.3.3 Play an event video in the web using HLS

API Returns

GET /alert.m3u8

The video is in HLS format, which can easily be played in
the web as the video is transferred using a number of small
video files transferred over HTTPS. Because of the small file
size it is very quick to scrub through the video as you don't
have to wait for the full video to download to see video
near the end of the recording.

HLS videos can be played in Safari natively and also in
Chrome and Firefox using HLS.js. We have used 2 options
for using HLS.js.

This call returns a standard HLS .m3u8 file, which can be
played in the web using HLS.js.

The HLS player, will make subsequent calls to the logger to
get the .ts video files.

The simplest is using React.js because there is a component
available for this. https://www.npmjs.com/package/react-
hls
In older non-React code, we use https://github.com/video-
dev/hls.js/

Use this URL to specify where to get the video from.

<LOGGERSERVER>/alerturl.m3u8?uid=12345.63

&startt=1540567026&endt=1540567037&rom=1

&id=1540567030&buildmp4=0&token=<AUTHTOKEN

>

Parameters

• LOGGERSERVER: is the Logger server that a specific
device is assigned to. Get the value from
/devices/viewerInfo call above.

• AUTHTOKEN: is the value of authToken returned
from /login

• uid: uid.deviceid of the device that recorded the
event. e.g. 12345.63

Get the values below from data returned by /alert, but
need to convert from ms to s.

• startt: Start time of the event in seconds

• endt: End time of the event in seconds

• rom: Usually set to '1'. Will be '1' if the camera was
in record on motion mode when the event was
recorded.

• id: id of the alert.

• buildmp4: Set to 0 for HLS video. If set to 1, it will
return an MP4 file for download.

Here's a useful site that lets you test the above URL:
http://streambox.fr/mse/hls.js-0.7.4/demo/. Just form the
URL path to the logger as above and copy to this site's
custom URL field and the video should play.

1.3.4 Tell camera to start streaming live video

Use /sendcameratask to send a 'livecommand' action request to the camera.

Need to call this every 30 seconds while you want the camera to keep streaming live video. If you stop calling it, the
camera will stop streaming live video 60 seconds after the last call.

API Returns

GET /sendcameratask If sent OK, then returns 200 and result:

https://www.npmjs.com/package/react-hls
https://www.npmjs.com/package/react-hls
https://github.com/video-dev/hls.js/
https://github.com/video-dev/hls.js/
http://streambox.fr/mse/hls.js-0.7.4/demo/

<LOGGERSERVER>/sendcameratask?uid=<uidd>

&action=livecommand&token=<AUTHTOKEN>

e.g.

<LOGGERSERVER>/sendcameratask?uid=12345.63

&action=livecommand&token=<AUTHTOKEN>

Parameters

• LOGGERSERVER: is the Logger server that a specific
device is assigned to, get the value from
/devices/viewerInfo

• AUTHTOKEN: is the value of authToken returned
from /login

• uidd: uid.device id for a specific device e.g. 12345.63

{"result":"request sent to camera"}

1.3.5 Tell camera to record an event video

(Needs App version 3.15 or above installed on Cloud Adapter)

This uses the same API call as above (to tell a camera to live stream) but uses a different command ‘triggerevent’ instead
of ‘livecommand’. It also needs to be called every 15 seconds rather than every 30 seconds.

Use /sendcameratask to send a 'triggerevent' action request to the camera.

Need to call this every 15 seconds while you want the camera to keep recoding video. If you stop calling it, the camera will
stop recoding video about 20 seconds after the last call.

API Returns

GET /sendcameratask

<LOGGERSERVER>/sendcameratask?uid=<uidd>

&action=triggerevent&token=<AUTHTOKEN>

e.g.
https://uswest2-logger-1561647198-i-
04df43ecb589ae8c3.manything.com/sendcameratask?uid=
1000244.3&action=triggerevent&token=OTg2MTY4OjE1Nj
UxOTE0ODA6MTIwMDowOkwsVyxB*WfhFRSphnhZP6k7zb
cw6mWBPEHW31cOhNLzHhV9IBhe6uazt75fKb3yKHLCzRvU
7w3GnC6EHb26fK_PaNT3DA07RyrYRKs8B7hNR4VeUVZSTN
ZyAJP6B2JkX8UTlaHTti7B70GO_DqbeZvES8s1yiAuSIOxgosX
yYa7QuVa0844.

Parameters

• LOGGERSERVER: is the Logger server that a specific
device is assigned to, get the value from
/devices/viewerInfo

If sent OK, then returns 200 and result:
{"result":"request sent to camera"}

• AUTHTOKEN: is the value of authToken returned
from /login

• uidd: uid.device id for a specific device e.g. 12345.63

1.3.6 Get camera status

Use /cameras/status to find out current state of a camera. For example. This can be used to find out of the camera is
streaming live video, and which Wowza server it is currently streaming to.

Can be used to get status for a single camera or a list of cameras.

API Returns

GET /cameras/status

GET <logger>/cameras/status[?uidd=A.B[&uidd=C.D[&...]]]

Specifying Devices: You may provide a complete list of all
uidds for which you want to receive data. You may specify
1 or more uidds with 1 or more "uidd" querystring params.
If you provide none, you will get all resident devices to
which you have access.

Authorization: send token in Authorization header.

Curl Example:

- curl -w '\n' -v "<LOGGERSERVER>/cameras/status/

?uidd=329475.56&uidd=329475.22

&uidd=943584.1" -H "Authorization: ManythingToken

<AUTHTOKEN>"

Parameters

• LOGGERSERVER: is the Logger server that a specific
device is assigned to, get the value from
/devices/viewerInfo

• AUTHTOKEN: is the value of authToken returned
from /login

• uidd: You can specify 1, or n camera uidds

Return values of particular interest for live video.

• live: Will be true if the camera is currently streaming
live video. Otherwise will be false.

• wowza. If camera is streaming video, and live=true,
then this value will be the Wowza server that the
camera is streaming to. Warning: if live=false, then
this value will not be valid, it will be set to
'wowza1.manything.com'

{
 "result": {

 "12345": {

 "devices": {
 "46": {
 "uidd": "12345.46",
 "permissions": [
 "a"
],
 "session": null,
 "live": true,
 "startt": 0,
 "lastchunkend": null,
 "endt": null,
 "lastactivity": 1520250794022,
 “lastthumb”: 1579791887,
 “laststill”: 1578999321,
 "stillmode": "unknown",
 "wowza": "uswest2-wowza-1549300082-i-

05967ac0e1b1b5f87.manything.com",
 "device": true,
 "status": "offline",
 "lastalert": 0,
 "battery": null,
 "power": "unknown",
 "stalepower": 1,
 "facebookStreamId": null,
 "queue_mb": null,
 "queue_sec": null
 },
 "108": {
 "uidd": "12345.108",

 "permissions": [
 "a"
],
 "session": null,
 "live": false,
 "startt": 0,
 "lastchunkend": null,
 "endt": null,
 "lastactivity": 1547745408000,
 "stillmode": "normal",
 "wowza": "wowza1.manything.com",
 "device": true,
 "status": "offline",
 "lastalert": 0,
 "battery": 100,
 "power": null,
 "stalepower": 1,
 "facebookStreamId": null,
 "queue_mb": null,
 "queue_sec": null
 }
 }
 }
 }
}

Errors: You should receive standard sensible HTTP status
codes. Additionally you will receive an "errors" array
indicating any devices you requested that are not resident
on the logger, or that you are not authorized to view.

1.3.7 Tell camera to capture an image

Use /sendcameratask to send a 'capturethumb' or 'capturestill' action request to the camera.

The camera can capture two size of image. Thumbs are smaller images, with smaller file sizes and should be used where
possible. If a larger image is required then capture a ‘still’ image.

Thumb image: 256 x 144 (IP cam) or 192 x 144 (smartphone cam)
Still image: 640 x 360 (IP cam) or 480 x 360 (smartphone cam)

Note that this API call only tells the camera to capture the image, it doesn’t return the image. To retrieve the captured
image:

• First use the /camera/status API to get the time of the most recently image captured. These values are returned
in lastthumb or laststill.

• Call the /getthumb or /getstill API calls to retrieve the image, passing in lastthumb or laststill values for the time
parameter.

API Returns

GET /sendcameratask

<LOGGERSERVER>/sendcameratask?uid=<uidd>

&action=capturethumb&token=<AUTHTOKEN>

e.g.

 If sent OK, then returns 200 and result:
{"result":"request sent to camera"}

<LOGGERSERVER>/sendcameratask?uid=12345.63

&action=capturethumb&token=<AUTHTOKEN>

Parameters

• LOGGERSERVER: is the Logger server that a specific
device is assigned to, get the value from
/devices/viewerInfo

• AUTHTOKEN: is the value of authToken returned
from /login

• uidd: uid.device id for a specific device e.g. 12345.63

1.3.8 Get a thumb or still image

Returns a thumb or still image for the specified time

API Returns

GET /getthumb or GET /getstill

<LOGGERSERVER>/getthumb/uidd/time/<AUTHTOK

EN>

<LOGGERSERVER>/getstill/uidd/time/<AUTHTOKEN

>

e.g.

<LOGGERSERVER>/getthumb/12345.63/1540565930

/ <AUTHTOKEN>

Parameters

• LOGGERSERVER: is the Logger server that a specific
device is assigned to, get the value from
/devices/viewerInfo call above

• AUTHTOKEN: is the value of authToken returned
from /login

• uidd: uid.device id for a specific device e.g. 12345.63

• time: is the time of the captured image. You can get
the time of the most recently captured image by
calling /cameras/status and using the lastthumb or
laststill. This time is a Unix timestamp in seconds, e.g.
1583229327

This call just returns the image, there is no additional data.

Call can be used from the web, so the image is displayed
directly into a HTML element.

1.3.9 Get real time data

Rather than calling the API each time to get the camera status (/camera/status), it’s more efficient to use this real time API
call. For example, if you want to update the UI to show whether a camera is live or offline without polling that API.

As with cameras/status, it can be used to get data for a single camera or a list of cameras.

API Returns

GET /cameras/realtime/live

GET
<logger>/cameras/realtime/live[?uidd=A.B[&uidd=C.D[&...
]]]

Specifying devices: You may provide a complete list of all
uidds for which you want to receive data. You may specify
1 or more uidds with 1 or more "uidd" querystring params.
If you provide none, you will get all resident devices to
which you have access.

Authorization: send token in Authorization header.

Curl Example:

curl -w '\n' -v "<LOGGERSERVER>

/cameras/realtime/live?uidd=827029.20428&uidd=827

029.20429" -H "Authorization: ManythingToken

<AUTHTOKEN>"

Parameters

• LOGGERSERVER: is the Logger server that a specific
device is assigned to, get the value from
/devices/viewerInfo

• AUTHTOKEN: is the value of authToken returned
from /login

• uidd: You can specify 1, or n camera uidds

The connection will be kept open for up to 5 minutes.
During that data will be returned for each update triggered
by a camera. To keep getting data, you could disconnect
and recall the API every 4 minutes. Or you could check for
disconnection and remake the connection.

Each set of data returned will be for a specific camera. You
can see which camera it is in the uidd key.

Other keys will be similar to those returned from
/cameras/status.

Particular fields of interest include:

• status: Indicates the camera status e.g. ‘live’,
‘novideo’ or ‘offline’. If camera is disconnected
from the Adapter, then the value will be ‘novideo’.

An example of data returned for one camera update:

Note that there are different types of data returned from
this API. For data relating to camera status, the ‘type’ key
will be set to ‘liveSession’.

"data":{
 "type":"liveSession",
 "data":{
 "session":1613158412,
 "live":true,
 "startt":1613741672313,
 "lastchunkend":1613741672311,
 "endt":null,
 "lastactivity":1613741844000,
 "lastthumb":1613741823,
 "laststill":1613741020,
 "stillmode":"video_only",
 "wowza":"euwest1-wowza-1611946206-i-
0be12753c9156d4e3.manything.com",
 "uidd":"827029.20428",
 "device":true,
 "status":"live",
 "lastalert":1613741020,
 "battery":null,
 "power":null,
 "stalepower":1,
 "facebookStreamId":null,
 "queue_mb":null,
 "queue_sec":null
 }

For data about new motion events / alerts,
the ‘type’ key will be set to ‘alert’.

data: {

"type": "alert",
"data": {
"uidd": "250843.27",
"id": 1613745105,
"rom": 1,
"startt": 1613745105000,
"endt": 1613745117000,
"smx": "0a",
"aud": null,
"tz": 0,
"type": "motion",
"has_hdstill": 0
}
}

See section 1.3.1 (Get event data for a
device) for more information on events. The
data returned above is the same format as
historical event data, the main difference is
that the above data is received for newly
creation motion events.

1.4 Wowza API

1.4.1 Play live video from Wowza

Live video can be played using the HLS protocol.

API Returns

https://<WOWZA-
SERVER>/manything/<STREAMNAME>/playlist.m3u8
?userToken=<AUTHTOKEN>

Use the above path in your video player to play the live
video.

e.g. https://euwest1-wowza-1557390870-i-
00eee9526fed3c30d.manything.com/manything/827029.4
_984533-nr/playlist.m3u8?userToken=<AUTHTOKEN>

Parameters

• WOWZA-SERVER: is the Wowza server that a
specific device is assigned to. Get the value from
/devices/viewerInfo. Note that cameras often move
to a new Wowza server, so make sure you have a
recent value.

• AUTHTOKEN: is the value of authToken returned
from /login

Returns the video stream

As with general HLS spec, this will return an m3u8 file,
which is an index containing video fragments to play. If you
pass this API call to a video player that accepts a m3u8 file,
it should manage everything for you i.e. getting latest
m3u8 file, playing the ts file video fragments.

• STREAMNAME: is the live video stream name for
the camera to be viewed, get the value from
/devices/viewerInfo

1.5 Other APIs

1.5.1 PTZ Controls

From your viewer application, you may want to control the camera’s PTZ settings. At the moment, we only support this for
Hikvision cameras and we’re currently working on this for Axis cameras.

The control is done using the /sendcameratask API.

The following actions can be used:

Move or zoom in the specified direction for 1 second, and then stop automatically:
ptz_up, ptz_down, ptz_left, ptz_right, ptz_in, ptz_out

Move or zoom in the specified direction until told to stop:
ptzstart_up, ptzstart_down, ptzstart_left, ptzstart_right, ptzstart_in, ptzstart_out

Stop moving:
ptzstop

Example for the ptz_up action

API Returns

GET /sendcameratask

<LOGGERSERVER>/sendcameratask?uid=<uidd>
&action=ptz_up&token=<AUTHTOKEN>

e.g.
<LOGGERSERVER>/sendcameratask?uid=12345.63
&action=ptz_up&token=<AUTHTOKEN>

Parameters

• LOGGERSERVER: is the Logger server that a specific
device is assigned to, get the value from
/devices/viewerInfo

• AUTHTOKEN: is the value of authToken returned
from /login

• uidd: uid.device id for a specific device e.g. 12345.63

 If sent OK, then returns 200 and result:
{"result":"request sent to camera"}

	(Needs App version 3.15 or above installed on Cloud Adapter)

