The Cobb County Water System (CCWS) is committed to delivering to you, our customer, water that meets or exceeds federal and state quality requirements. We are pleased that this 2017 Water Quality Report shows we are doing that. Our priority is to deliver safe water to your home or business each day. We make significant efforts to protect our water resources for both existing needs and future generations.

The following pages provide the summary results of a continuous drinking water testing program. This report covers the calendar year 2016. Important definitions are provided to help clarify the information further. The CCWS’s Water Quality Report is also posted on our website at https://www.cobbcounty.org/images/documents/water/waterqualityreport.pdf. For additional information contact our Customer Service Division at 770.419.6200.

The bottom line is we provide safe, quality drinking water to you 24 hours a day, seven days a week, 365 days each year, because we know that it is vital to the health and well-being of our community.

WHERE DOES MY WATER COME FROM?

You are a customer of the CCWS, an agency of Cobb County government. We distribute treated water to more than 179,000 customer accounts representing about 741,000 residents in the CCWS’s service area, and treat collected wastewater in a manner safe for your families and the environment.

The Water System purchases water from the Cobb County-Marietta Water Authority (CCMWA), a utility providing treated drinking water on a wholesale basis to cities and counties in the region. CCMWA treats drinking water using state-of-the-art equipment and ensures water quality through continued monitoring and testing.

The CCMWA was created by the Georgia Legislature in 1951 for the purpose of providing potable water to Cobb County. The CCMWA has two surface water sources supplying two treatment facilities. The Wyckoff Treatment Division is supplied from Lake Allatoona, a Corps of Engineers impoundment in north Cobb, south Cherokee and south Bartow counties. The Quarles Treatment Division receives water from the Chattahoochee River. After treatment at these plants, water is transported to various areas within the County where it is fed into CCWS distribution lines and finally to your home or business.

The Cobb County – Marietta Water Authority and the Atlanta Regional Commission completed a source water assessment itemizing potential sources of water pollution to our surface drinking water supplies. This information can help you understand the potential for contamination of your drinking water supplies and can be used to prioritize the need for protecting drinking water sources.

A Source Water Assessment is a study and report which provides the following:

- Identifies the area of land that contributes the raw water used for drinking water,
- Identifies potential sources of contamination to drinking water supplies, and
- Provides an understanding of the drinking water supply’s susceptibility to contamination.

For more information on this project visit the Source Water Assessment website at http://www.atlantaregional.com/environment/water/source-water-assessment-project or you can request information by mail from the ARC:

Attn: Source Water Assessment Environmental Planning Division
Atlanta Regional Commission
40 Courtland Street, NE
Atlanta, GA 30303

HOW IS THE WATER TREATED?

The process begins by pumping untreated water from the Chattahoochee River or Lake Allatoona into sedimentation basins where large particles are removed and the water is disinfected.

The water is then directed to a process called flocculation which is a gentle mixing of the water with a coagulant. This allows particles, called floc, to form and settle, clarifying the water. Next, the water is put through a filtration system where water flows through sand filters trapping even smaller particles.

After filtration, chemicals are added for final disinfection. Except for chlorine and fluoride, chemicals used in the treatment process are removed before the finished water is distributed to you.

WHY ARE THERE CONTAMINANTS?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

a) Microbial contaminants such as viruses and bacteria which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

b) Inorganic chemical contaminants such as salts and metals which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

c) Pesticides and herbicides which may come from a variety of sources such as agriculture, storm water runoff, and residential uses.

d) Organic chemical contaminants, including synthetic (man-made) and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gasoline stations, urban storm water runoff, and septic systems.

e) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

The U.S. Environmental Protection Agency (EPA) has established treatment methods to reduce contaminants to levels that protect human health. CCMWA’s laboratory continuously monitors water quality to be sure it is properly treated to EPA standards. In addition, up to 226 water samples throughout the CCWS distribution system are taken each month and tested. To ensure tap water is safe to drink, EPA prescribes limits on the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water.
Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline at 1.800.426.4791.

WHAT IS CRYPTOSPORIDIUM?
Cryptosporidium is a microscopic pathogen found in surface water throughout the U.S. Although filtration removes Cryptosporidium, the most commonly-used filtration methods cannot guarantee 100 percent removal. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks; however, immuno-compromised individuals, infants, small children, and the elderly are at greater risk of developing life threatening illness. We encourage immuno-compromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water. The monitoring of our source water performed during the last testing period had no detection of cryptosporidium.

LEAD IN WATER
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The CCWS is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. The water has been treated to minimize leaching of such materials. Water from other sources, such as water made from well water or treated by households, containing lead supplied by plumbing materials used in plumbing components, may be at a greater risk. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised individuals, such as persons undergoing chemotherapy, persons who have had organ transplants, and persons with HIV/AIDS or other immune system disorders, some elderly people, and infants can be particularly at risk. EPA/CDC guidelines contain the name of each substance, the highest level allowed by regulation (MCL), the ideal (MCLG) or other requirements that a water system must implement.

HEALTH RELATED CONCERNS
Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

HOW TO READ THE DRINKING WATER ANALYSIS TABLE
The table shows the results of our water quality analyses. Every contaminant regulated by EPA that was detected in the water, even in the minutest traces, is listed here. The table contains the name of each substance, the highest level allowed by regulation (MCL), the ideal goals for public health (MCLG), the usual sources of such contamination, footnotes explaining our finding, and a key to units of measurement. Definitions of MCL, MCLG, AL, and TT are important.

DEFINITIONS
AL – Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must implement.
BDL – Below Detection limits.
EC – E. coli-positive.
MCL – Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available technology and appropriate means to lessen the risk of infection by Cryptosporidium are available from the EPA’s Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.
MCLG – Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MRDL – Maximum Residual Disinfectant Level: The level of a disinfectant allowed in drinking water. There is no known or expected risk to health. MCLs allow for a margin of safety.
MRDLG – Maximum Residual Disinfectant Level Goal: The level of a disinfecting agent allowed in drinking water which below which no known or expected risk to health. MCLs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Microbiological Contaminants
(* The data presented in this table were from samples tested during 04/01/2016 – 08/31/2016)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Date Tested</th>
<th>MCL</th>
<th>MCLG</th>
<th>Level Found</th>
<th>Typical Source</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total coliform bacteria</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>E. coli</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Notes:
- A PWS will receive an E. coli MCL violation when there is any combination of an EC+ sample result with a routine/repeat TC+ or E. coli-positive.
- *This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2016. All water systems were required to comply with the Total Coliform Rule (TCR) for March 31, 2016, and begin compliance with a new rule, the Revised Total Coliform Rule (RTC), April 1, 2016. The new rule maintains the purpose to protect public health by ensuring the continued monitoring of the total coliform and salmonella systems and the reduction of the number of violations. This new rule eliminates the requirement for the total coliform systems to identify a problem (a violation), and if there is no longer a maximum contaminant level (MCL) violation for multiple total coliform detections. Instead, the new rule requires systems to meet specified frequency of total coliform occurrences to avoid an assertion to detect if any significant deficiencies exist. If found, these must be corrected by the Public Water System (PWS).*