

Georgia Department of Transportation Bridge Inspection Report

District: 4841700000 - D7 District Seven Inspection Area: 9 County: Cobb

Location ID:067-09028M-000.04NOver:CSX RAILROAD (340397A)Structure ID:067-0161-0Road Name:OLD HWY 41Bridge Information:6-Revised inventory or operating ratings; load limits

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 Road Name: OLD HWY 41

Evaluation

Topside Inspection Team Inspection Type: General Inspection Date: 05/15/2017

Team Leader: Lj Mergia
Assistants: Phillip Jennings

Deck

NBIS Condition 6 - Satisfactory Condition Material: O. Concrete

Deck Wearing Surface Type: 1. Concrete

7.0" Concrete slab.

The deck surface has up to 0.125" transverse cracking, exposed aggregate and minor pop-out spalls.

All deck joints are leaking.

Deck overhang in span 4 right side has a spall with exposed rebar due to collision damage.

Moderate abrasion throughout the deck surface.

Edge beam spall with exposed rebar at bent 3 bay 4 and bent 5 bay 4.

Superstructure

NBIS Condition 5 - Fair Condition Material: M. Steel Year Painted: 1972

Paint Type: 1- Lead Chromate Oil Alkyd System

Temperature (F):

5-Span steel beam, (6-beams with steel diaphragms (Bolted and welded) per span).

Spans 1, 2, 4 and 5 are W21 X 55.

Span 3 has W27 X 84.

Paint is peeling and flaking off beams.

Paint has lost its effectivness with overall corrosion being more severe on beam ends and bearings.

Minor section loss on the beam ends and bearings.

Substructure

NBIS Condition 5 - Fair Condition Material: N. Steel-Concrete Year Painted: 1972

Paint Type: 6- No Paint Present

Concrete caps at both abutments founded on round steel tube piles.

Bents 2, 3, 4 and 5 have concrete caps on 6-HP12 X 53 steel piles.

Minor settlement at both abutment.

Abutment 1 has 1pile exposed and abutment 6 has 3piles exposed.

Cap at bent 5 has a 0.31" crack in the bottom, along the top and ends of the cap at piles 1 and 2.

Bent 4, right end of cap has small spall.

Steel piling in bents 2 through 5 have no paint.

All piling have minor section loss.

Bent 3 piles have section loss up to 0.125".

All steel piling needs to be cleaned and painted.

General

This Bridge:

Built in 1972, project unknown.

Forward left approach slab is undermined 1.0' high X 6' long.

Old Highway 41 (CR02896)

Hand tools used.

Repairs:

Clean and paint all steel piling and then encase in concrete.

Clean and paint superstructure.

Clean and seal all deck joints.

Printed: 06/15/2017 Page 2 of 14

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 Road Name: OLD HWY 41

Repair damage concrete where handrail posts were bolted and replace missing post.

Repair settlement at both abutments. Repair undermined approach slab.

Conditional Situations

Confined Space: No Traffic Control Needed: No

Equipment Used

Access Equipment: None Topside Boat: None

Waders: None Special Imaging Device: Binoculars

Load Rating and Posting

Truck Type	Gross/H-Modified	HSModified	Tandem	3-S-2	Log	Piggy
Calculated Posting	13	13	09	21	15	00
Posting Required	Yes	Yes	Yes	No	Yes	No
Existing Posting	13	13	09	00	15	00

Item 103 Temporarily Shored: No Posting Required: Yes

Item 41 - Structure Open, Posted or Closed: B. Open, posting recommended

Element Data

Element	Parent Element	Measurement Unit	Env*	Quantity	State 1	State 2	State 3	State 4
12-Reinforced Concrete Deck		SQUARE FEET	2	4737	4709	20	8	
107-Steel Open Web Girder/Beam		Linear Foot	2	954	0	954		
515-Steel Protective Coating (107)	107-Steel Open Web Girder/Beam	SQUARE FEET	2	5304	0	3276	934	1094
215-Reinforced Conc Abutment		Linear Foot	2	60	40		20	
225-Steel Pile		Each	2	24	6	18		
515-Steel Protective Coating (225)	225-Steel Pile	SQUARE FEET	2	1902	331			1571
234-Reinforced Conc Pier Cap		Linear Foot	2	249	249			
301-Pourable Joint Seal		Linear Foot	2	168	0		140	28
311-Movable Bearing		Each	2	30	0	30		
515-Steel Protective Coating (311)	311-Movable Bearing	SQUARE FEET	2	60	0		60	
313-Fixed Bearing		Each	2	30	0	30		
515-Steel Protective Coating (313)	313-Fixed Bearing	SQUARE FEET	2	60	0		60	
321-Reinforced Concrete Approach Slab		SQUARE FEET	2	1788	1788			
330-Metal Bridge Railing		Linear Foot	2	318	308		10	

Env* = Environment

Printed: 06/15/2017 Page 3 of 14

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 **Road Name:** OLD HWY 41

Defects

Element	Defect	State 2	State 3	State 4
107-Steel Open Web Girder/Beam	Corrosion	954		
12-Reinforced Concrete Deck	Delamination/Spall/Patched Area	20	8	
215-Reinforced Conc Abutment	Scour		20	
225-Steel Pile	Corrosion	18		
301-Pourable Joint Seal	Seal Adhesion		140	28
311-Movable Bearing	Corrosion	30		
313-Fixed Bearing	Corrosion	30		
330-Metal Bridge Railing	Damage		10	
515-Steel Protective Coating (107)	Effectiveness (Steel Protective Coatings)	3276	934	1094
515-Steel Protective Coating (225)	Effectiveness (Steel Protective Coatings)			1571
515-Steel Protective Coating (311)	Effectiveness (Steel Protective Coatings)		60	
515-Steel Protective Coating (313)	Effectiveness (Steel Protective Coatings)		60	

Maintenance Items

Activity	Work Quantity	Priority	Location	Inspection Date	Completion Date	Comments
815 - BRIDGE CURB/RAIL REPAIR (LINEAR FEET)		В	Bridge rail.	05/16/2017		Repair collision damage.
000 - BRIDGE PAINTING (Not performed by Highway Maintenance, used by Bridge Mntce) ()		В	All piles.	05/16/2017		Clean and paint.
000 - BRIDGE PAINTING (Not performed by Highway Maintenance, used by Bridge Mntce) ()		В	Beams and bearings.	05/15/2017		Clean and paint.
845 - OTHER BRIDGE MAINT (PERSON HOURS)		В	Abutments.	05/15/2017		Repair settlement.
800 - BRIDGE JOINT SEALING (LINEAR FEET)			All joints.	05/15/2017		Clean and seal.
550 - EROSION CONTROL (PERSON HOURS)		В	Forward left approach slab.	05/15/2017		Repair undermining.

Printed: 06/15/2017 Page 4 of 14

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 **Road Name:** OLD HWY 41

No Specialized Inspection performed on this bridge.

Printed: 06/15/2017 Page 5 of 14

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 **Road Name:** OLD HWY 41

No Other Special Inspection performed on this bridge.

Printed: 06/15/2017 Page 6 of 14

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 Road Name: OLD HWY 41

No Fracture Critical Inspection performed on this bridge.

Printed: 06/15/2017 Page 7 of 14

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 Road Name: OLD HWY 41

Bridge Components

Superstructure Data

Span #	Beam Type	Beam Spacing	Length	# Beams	Remarks
1	Steel	4.7	28	6	W21 X 55
2	Steel	4.7	28	6	W21 X 55
3	Steel	4.7	47	6	W27 X 84
4	Steel	4.7	28	6	W21 X 55
5	Steel	4.7	28	6	W21 X 55

Bearing Data

Span #	Rear Type Bearing	Forward Type Bearing	Remarks
1	02 - Fixed Plate	01 - Sliding Plate	Fair
2	01 - Sliding Plate	02 - Fixed Plate	Fair
3	01 - Sliding Plate	02 - Fixed Plate	Fair
4	01 - Sliding Plate	02 - Fixed Plate	Fair
5	01 - Sliding Plate	02 - Fixed Plate	Fair

Printed: 06/15/2017 Page 8 of 14

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 Road Name: OLD HWY 41

This bridge has no intersected feature.

Printed: 06/15/2017 Page 9 of 14

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 Road Name: OLD HWY 41

No Underwater Inspection performed on this bridge.

Printed: 06/15/2017 Page 10 of 14

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 Road Name: OLD HWY 41

Waterway Information

A:

B:

 \mathbf{C} :

D: 00.0

E: 00.0

F:

G:

H:

I : J :

K:

Location of Bridge Height:

Bridge Height Taken:

Scour Condition: N

Waterway Adequacy: N

Channel Protection: N

Comments:

Substructure Skew = Channel Skew = Stream Angle =

Printed: 06/15/2017 Page 11 of 14

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 Road Name: OLD HWY 41

Calliaian	I Co
Collision	Information

Beam Type:

Span # with Beam Damage:
Total # of Beams in Span:
of Damaged Beams:

Minimum Vertical Clearance: ft - in

Actual Vertical Clearance at

Point of Impact: ft - in

Posted Vertical Clearance: ft - in

Report Type:

Report Date:

Damage Location in Span:

Damage Type : Damage Details :

Repairs Required: No **Repairs Made:** No

Repair Details:

Additional Comments:

Printed: 06/15/2017 Page 12 of 14

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 **Road Name:** OLD HWY 41

Photographs

P5150030.JPG

Typical beam paint.

P5150024.JPG

Typical deck cracking.

P5150025.JPG

Typical joint.

P5150029.JPG

Typical pile paint.

P5150027.JPG

Span 4 looking south.

067-0161-0-2.JPG

Right side.

Printed: 06/15/2017 Page 13 of 14

Location ID: 067-09028M-000.04N **Over:** CSX RAILROAD (340397A)

Structure ID: 067-0161-0 **Road Name:** OLD HWY 41

Photographs

Printed: 06/15/2017 Page 14 of 14

ECS Southeast, LLP

Report of Bridge Foundation Investigation

Old Highway 41 Bridge Replacement Project
Cobb County, Georgia
Cobb County DOT P. I. No.: X2116
ECS Project Number 10:9815

February 12, 2019 Revision 2

February 12, 2019 Revision 2

Mr. Garrick Edwards, P.E. AECOM One Midtown Plaza 1360 Peachtree Street, NE, Suite 500 Atlanta, Georgia 30309, USA

BFI Report - Old Highway 41 Bridge Replacement Project Reference:

Old Highway 41 over CSX RR

Cobb County, Georgia

Cobb County DOT P. I. No.: X2116

ECS Project Number 10:9815

Dear Mr. Edwards:

ECS Southeast, LLC (ECS) is pleased to submit this revised Bridge Foundation Investigation (BFI) for Old Highway 41 Bridge Replacement project in Cobb County. The attached report has been revised to incorporate the comments and correspondence from the Cobb County DOT Review Engineer.

For this project we recommend the abutments be supported using 14 x 117 H-piles (50 ksi) bearing in partially weathered rock (PWR) and/or rock. Hard driving is anticipated and pile points will be required for driven piles. Pilot holes will likely be required at Bent 2 as indicated in the attached.

Thank you for the opportunity to provide geotechnical engineering services on this project. Should you have questions regarding our findings or need additional consultation, please do not hesitate to contact our office.

Sincerely,

ECS SOUTHEAST, LLP represented by:

Jay Hornsby, P.G.

Geotechnical Department Manager

Robert H. Barnes, P.E., P.G.

Principal Engineer

GA Registration No. 29715

Enclosure: BFI Data Form

Bridge Foundation Investigation (LRFD) Old Highway 41 Bridge Replacement Project Cobb County, Georgia Cobb County DOT Project No.: X2116 February 12, 2019 Revision 2

LOCATION (See Map) Old Highway 41 Bridge Replacement, Old Highway 41 over CSX Railroad, Cobb County, Georgia

GENERAL INFORMATION

GEOLOGIC FORMATION

The site is located in the Piedmont Region of Georgia. According to the Geology of the Greater Atlanta Region (1984), the site is underlain by the Laurel Lake Mafic Complex (Ilu) with bedrock consisting of undifferentiated mafic and intermediate rocks. According to the Geologic Map of Georgia (1976) the site is underlain by bedrock consisting of hornblende gneiss and amphibolite (mm3).

SUBSURFACE FEATURES

The subsurface is comprised of various layers of silt, sandy, silt, and silty sand overlaying partially weathered rock, fractured rock, and bedrock. Partially weathered rock (PWR) was noted at:

Bent	Boring	Elevation
Bent 1	BB-1	1135
Bent 1	WB1-2	1140
Bent 1	WB1-3	1143
Bent 2	BB-2	1152
Bent 2	WB2-1	1146
Bent 2	WB2-2	1145

Refusal is a designation applied to any material which cannot be further penetrated by the power auger and is normally indicative of very hard or very dense material such as boulders, rock lenses, or the upper surface of bedrock.

Auger refusal was encountered at:

Bent	Boring	Elevation
Bent 1	BB-1	1131
Bent 1	WB1-2	1135
Bent 1	WB1-3	1138
Bent 2	BB-2	1150
Bent 2	WB2-1	1142
Bent 2	WB2-2	1142

Bridge Foundation Investigation (LRFD) Old Highway 41 Bridge Replacement Project Cobb County, Georgia Cobb County DOT Project No.: X2116 February 12, 2019

Revision 2

Groundwater was noted in the borings at:

Bent	Boring	Elevation
Bent 1	BB-1	1138
Bent 1	WB1-2	1143

For additional information see the boring layout and boring logs.

SITE CLASSIFICATION We recommend a Seismic Site Class of D per AASHTO LRFD 3.10.3.1.

1.0 -- FOUNDATION RECOMMENDATIONS

	Pile Bent		
Bents	(Type)		
1 & 2	H-Pile (50 ksi)		

1.1 -- Pile Properties

		Nominal	Nominal	Maximum Factored
		Compression Stress	Tension Stress	Structural Resistance
Pile Type	Pile Size (in)	(ksi)	(ksi)	(kips)
HP (50 ksi)	14 x 117	45.0	45.0	860

1.2 -- DESIGN LOADS

	Maximum	
	Factored	Maximum
	Strength Limit	Factored Service
	State Load	Limit State Load
Bents	(kips)	(kips)
1 & 2	432	295

2.0 -- FOUNDATION LOADS

2.1 -- PILE FOUNDATION LOADS

			Down Drag (kips)***	Driving Resistance
Bents	Pile Type	Size (in)		(kips)
1	H-Pile (50 ksi)	14 x 117	17	713
2	H-Pile (50 ksi)	14 x 117		665

Bridge Foundation Investigation (LRFD) Old Highway 41 Bridge Replacement Project Cobb County, Georgia

Cobb County DOT Project No.: X2116

February 12, 2019

Revision 2

3.0 -- FOUNDATION ELEVATIONS

Bent	Minimum Tip Elevation	Estimated Tip Elevation
1	1132	1126 ⁽¹⁾
2	1144	1144

⁽¹⁾ Pilot holes, if used, must extend 5 feet into rock.

4.0 -- GENERAL NOTES

Elevations All elevations are based on survey control and plans provided by AECOM.

Waiting Period None required.

As Built Foundation The as built foundation information should be forwarded to the Cobb

Information County DOT upon completion of the foundation system.

Special Problems Both underground and overhead utilities, including electric, natural

gas, and water were noted in the proposed work area during our site

visit.

4.1 -- PILE FOUNDATION NOTES

Driving resistance after minimum tip elevations are achieved in conjunction with Special Provision 520 Piling for LRFD and Special Provision 523 Dynamic Pile Testing.

Perform a PDA test at each of the following locations:

Bent	Location
1	Left and Right

* Nominal Bearing Resistance of Single Pile

Driving resistance is based on the following field verification method and resistance factor φ_{dyn} AASHTO LRFD 2014 (10.5.5.2.3-1):

Resistance Determination Method Resistance **Factor** 0.65

Driving criteria established by dynamic testing of at least two piles per site condition, but no less than 2% of the production piles.

Bridge Foundation Investigation (LRFD) Old Highway 41 Bridge Replacement Project Cobb County, Georgia Cobb County DOT Project No.: X2116 February 12, 2019

Downdrag***

Revision 2

The load factor y_p used to calculate the downdrag force per AASTHO LRFD 2010 (3.4.1-2) is 0.75.

Drivability

A drivability analysis has been completed on the above mentioned piles to their respective estimated tips with a Delmag 19-42 hammer system.

Points

Pile points are recommended for each pile to be driven to insure adequate penetration into very dense weathered rock.

Pilot Holes

Layers of very dense PWR or rock will likely be encountered above minimum tip elevation at Bent 2 requiring pilot holes. Pilot holes should be set up for H-piles at Bent 2 to advance piles to the required depth.

In addition, pilot holes may also be required at Bent 1 when the minimum tip elevation specified cannot be attained by normal pile driving. Refer to the attached Special Provision 520 Modified Pilot holes.

Use a maximum pilot hole diameter of 24". The holes should be filled with concrete to the top of the rock after the piles are driven. When required, pilot holes should be set up to the following minimum elevations:

Bent	Elevation
1	1126
2	1144

Protection

Down-drag To avoid inducing down-drag loads into the piles from potential settlement of compressible layers during construction of the MSE wall, we recommend that piles at Bent 1 be protected from down-drag by using jackets or other approved materials.

Special Problems

- A. Both underground and overhead utilities, including electric, natural gas, and water were noted in the proposed work area.
- B. Erratic pile lengths can be expected.

Bridge Foundation Investigation (LRFD)
Old Highway 41 Bridge Replacement Project
Cobb County, Georgia
Cobb County DOT Project No.: X2116
February 12, 2019
Revision 2

5.0 - QA / QC

This Report of Bridge Foundation Investigation has been prepared in accordance with generally accepted geotechnical engineering practice and GDOT requirements for Bridge Foundation Investigations. No warranty is expressed or implied. Furthermore, ECS assumes no liability for any third party's usage of this report and its attachments without express written consent.

The evaluations presented in this report are based on the available project information, as well as on the results of the exploration. Should a change in the project criteria be made such as the location of the new construction, ECS should be notified to evaluate the changes and make new recommendations if warranted.

ECS SOUTHEAST, LLP represented by:

Prepared By:

Robert H. Barnes, P.E., P.G. GA PE Registration No. 29715

Reviewed By:

Jay Hornsby, P.G.

Attachments:

Special Provision 520 Piling for LRFD

Special Provision 520 Modified Pilot holes

Special Provision 523 Dynamic Pile Testing

Figure 1 - Site Vicinity Map

Figure 2 – Boring Location Plan and Cross Section

Reference Notes for Borings

Boring Logs (6)

Lab Summary Sheet

Core Photo Logs (BB-1, BB-2, WB2-1, and WB2-2)

Driller's Hammer Energy Rating Report (Diedrich D-50 SN# 404)

Seismic Site Class Calculations

Nominal Pile Driving Resistance Calculation Sheets

APile analysis

GRLWEAP analysis

Revised: February 15, 2016

COBB COUNTY DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION

COBB COUNTY DOT PROJECT No. X2116, COBB COUNTY SECTION 520—PILING

Delete Sub-Section 520.3.05.D.1 and substitute the following:

520.3.05.D.1. Determine Driving Resistance

Drive piles in one continuous operation. Determine the driving resistance of the piling based on the method specified in the plans, which will be one of the following methods (a - c):

- a. Upon completion of the dynamic pile testing in accordance with Special Provision Section 523. The pile bearing will be determined by computing the penetration per blow with less than ¼-inch (6-mm) rebound averaged through 12 inches (305 mm) each of penetration. When it is considered necessary by the Engineer, the average penetration per blow may be determined by averaging the penetration per blow through the last 10 to 20 blows of the hammer. In soft material the driving resistance may be determined, at the Engineer's discretion, after delaying driving operations and performing pile restrikes.
- b. Upon completion of the loading test in accordance with Sub-Section 520.3.05.D.2.
- c. Shall not be used when driving pile to hard rock. Using FHWA-modified Gates Formula as provided below:

$$R_{ndr} = 1.75 (E_d)^{0.5} \log_{10} (10N_b) - 100$$
 (kips) U.S units

$$R_{ndr} = 7 (E_d)^{0.5} \log_{10} (10N_b) - 550$$
 (kN) S.I. units

Where:

 R_{ndr} = nominal pile driving resistance measured during pile driving

 E_d = developed hammer energy. This is the kinetic energy in the ram at impact for a given blow. If ram velocity is not measured, it may be assumed equal to the potential energy of the ram at the height of the

stroke, taken as the ram weight times the actual stroke (ft-lb for U.S units, kN-m for S.I. units)

 N_b = Number of hammer blows for 1.0 inch of pile permanent set (blows/in)

These resistance formulas apply only when:

- The hammer has a free fall.
- The head of the pile is not broomed, crushed, spalled, or excessively crimped.
- The penetration rate is reasonably uniform.

Determining driving resistance by formula is not a Pay Item. Provide the facilities for determining driving resistance by formula as an incidental part of the work.

Once the driving resistance has been determined by one of the methods noted above, do not continue to drive piles if the Engineer determines that the piles have reached practical refusal. Practical refusal is defined as 20 blows per inch with the hammer operating at the highest setting or setting determined by the Engineer and less than ¼-inch (6-mm) rebound per blow. The Engineer will generally make this determination within 2 inches (51 mm) of driving. However, the Engineer will not approve the continuation of driving at practical refusal for more than 12 inches (305 mm). When the required pile penetration cannot be achieved by driving without exceeding practical refusal, use other penetration aids such as jetting, spudding, predrilling or other methods approved by the Engineer.

d. Wave Equation: Use the Wave Equation Analysis for Piles (WEAP) program to evaluate the suitability of the proposed driving system chosen from the methods noted above (including the hammer, follower, capblock and pile cushions) as well as to estimate the driving resistance to achieve the pile bearing requirements and to evaluate pile driving stresses. Use the WEAP program to show that the hammer is capable of driving to a driving resistance equal 130% (1.3 times) the driving resistance shown in the Plans without overstressing the piling in compression or tension and without reaching practical refusal.

Perform the WEAP analysis with personnel who are experienced in this type work, and have performed this analysis on a minimum of 15 projects. Provide a list of the qualifications and experience of the personnel to perform the WEAP analysis for this Project.

The Engineer may modify the scour resistance shown in the plans if the dynamic pile test is used to determine the actual soil resistance through the scour zone. Also, the Engineer may make modifications in scour resistance when the Contractor proposes drilling and/or jetting to reduce the soil resistance in the scour zone.

A minimum of two weeks prior to beginning any pile driving operations, submit to the Engineer for evaluation and approval the following information on all of the proposed pile driving system(s) to be used on the Project including but not limited to:

- i. Items on Pile Driving Equipment Data Sheet
- ii. Other information on the driving system required by the Engineer
- iii. A WEAP program output indicating the approximate depth or elevation where the pile will achieve the bearing required
- iv. Valid Driving Criteria.

Valid driving criteria is defined as having the required hammer having a hammer set greater than 3 blows per inch and less than 10 blows per inch at the driving resistance for that pile.

If WEAP analyses show that the hammer(s) will overstress the pile, modify the driving system or method of operation as required to prevent overstressing the pile. Resubmit the modified pile driving system information and WEAP program output to the Engineer for re-evaluation. Do not begin pile driving operations until the Engineer has approved the qualifications of the personnel, the WEAP program output, and the pile driving system(s).

Approval of the pile driving system(s) is also based on satisfactory field trials with dynamic pile testing. Obtain approval from the Engineer for the pile driving system(s) based on satisfactory field performance.

If piles require different hammer sizes, the Contractor may elect to drive with more than one size hammer or with a variable energy hammer, provided that the hammer is properly sized and cushioned, will not damage the pile, and will develop the required resistance.

For penetration of weak soils by concrete piles, use thick cushions and/or reduced stroke to control tension stresses during driving.

Revised: February 15, 2016

Pile Driving Data Form

Contract ID:		Structure Name:		
PI Number:		Structure No.:		
County		Pile Driving Contractor:		
		Manufacturer:	Model No.	
		Hammer Type:	Serial No.	
		Manufacturers Maximum Rated		
٠, ٦	T.T.	Stroke at Maximum Rated Energy:		
	Hammer	Range in Operating Energy:		
$1 \cup 1$		Range in Operating Stroke:		
ר א		Ram Weight:		
		Modifications:		
		Weight: (king)	Diameter	(in)
	Striker Plate	Weight:(kips) Thickness:(in)	Diameter.	(111)
		Material 1	Material 2	
	Hammer	Name:(in ²)	Area: (in ²)	
	Cushion	Thickness/Plate:(in)	Thickness/Plate:	(in)
		No. of Plates:		
		Total Thickness of Hammer Cu		
	Halmat	Weight including incents.		(Irina)
-	Helmet	Weight including inserts:		(Kips)
		Material:		
	Pile	Area:(in ²)	Thickness/Sheet:	(in)
	Cushion	No. of Sheets:		\ /
		Total Thickness of Pile Cushion	ı:	(in)
		Pile Type:		
		Wall Thickness:(in)	Taper:	
		Cross Sectional Area:(in ²)	Weight/Meter:	
	Pile	Ordered Length:		
		Driving Resistance:		(kips)
		Description of Splice:		
		Driving Shoe/Closure Plate Des	scription:	
Submitted By	<u>.</u>		Date:	
~	• ————			

DEPARTMENT OF TRANSPORTATION STATE OF GEORGIA

SPECIAL PROVISION

Cobb County DOT Project No. X2116 Cobb County

SECTION 520 MODIFIED—PILING

Delete Sub-Section 520.3.05.B and substitute the following:

520.3.05.B. Drill Pilot Holes

Drill Pilot Holes only when the minimum tip elevation specified in the Plans cannot be attained by normal pile driving. Remove the driven piles that did not reach minimum tip elevations prior to drilling pilot holes and cut off any damaged sections as directed by the Engineer prior to reuse. Include the cost of pile removal and cut off in the bid price for pilot holes.

When pilot holes are required, drill them to the diameter and approximate depth specified on the Plans.

Backfill voids and holes with Class A or better concrete. Furnishing and placing backfill concrete is an incidental part of the work.

The following are not considered pilot holes:

- Holes created by spudding (punching)
- Holes dug to drive piling that is too long to fit leads
- Holes dug to replace a template (if permitted)

Where pilot holes are required in granular material and the material cannot be sealed off using "mudding" drilling methods, drill the pilot hole as follows:

- 1. Place a casing pipe with a large enough diameter around the boring device.
- 2. Hold the casing in position until the pilot hole is completed and the pile driving progresses deep enough into the hard material to keep loose material out of the pilot hole.

The use of casing is incidental to the work.

COBB COUNTY DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION COBB COUNTY DOT PROJECT No. X2116, COBB COUNTY SECTION 523 - DYNAMIC PILE TESTING

523.1 General Description

The work consists of performing dynamic pile testing using the Pile Driving Analyzer (PDA) to monitor the driving of piles with accelerometer and strain gauges attached to the piles. Piles to be dynamically tested will be identified in the Special Provision or on the Plans. Prior to pile driving, the Engineer will determine production or test piles to be dynamically tested. Perform the dynamic pile testing in accordance with ASTM D4945-12.

Take dynamic measurements during driving of any required piles. Drive the pile as shown in the Special Provisions or on the Plans.

523.2 Materials

Furnish measuring instruments for dynamic pile testing. Attach instruments near the top of the piles with bolts placed in drilled holes. Furnish materials, labor and equipment necessary for installation of the instruments.

523.3 Construction Requirements

Measure wave speed prior to driving piles. Wave speed measurements will not be required for Steel H piles or metal shell piles. When wave speed measurements are performed, place the piles in a horizontal position not in contact with other piles.

Perform dynamic pile testing during driving. Modify the driving to reduce the stress and/or eliminate the damage, should the recommended stress level be exceeded or if damage occurs (determined visually or as indicated by the instrumentation).

Do not exceed the following maximum driving stresses, as determined by the dynamic pile testing:

1. For Steel piles:

0.9 Fy, where Fy = Yield strength of steel

2. For Prestressed Concrete Piles:

Compression:

$$\sigma_{dr} = (0.85f'_c - f_{pe})$$

Tension in Normal Environments:

$$\sigma_{dr} = (0.095\sqrt{f'_{c}} + f_{pe})$$

Tension in Severe Corrosive Environments:

$$\sigma_{dr} = \varphi_{da} f_{pe}$$

where:

 σ_{dr} = maximum allowed driving stress, ksi

f 'c= specified minimum 28-day compressive strength of concrete, ksi

f pe= effective prestress in concrete, ksi, (after all losses) at the time of driving taken as 0.78 times the initial prestress force

Re-drive friction piles that do not obtain bearing after a freeze period of a minimum of 24 hours or for a period designated on the Plans, whichever is longer. Reset the gauges if required. Re-strike the pile with a warm hammer until a maximum penetration of 3 inches (76 mm) or 40 blows is reached, whichever occurs first. The Engineer may modify the Pile Driving Objective based on the results of the PDA work.

Provide two weeks' notice prior to the driving of designated piles and cooperate with the Engineer in connection with the performance of Dynamic Pile Testing.

Provide a complete report consisting of but not limited to PDA field monitoring data, results of CAPWAP computer analyses, and recommendations such as pile lengths, hammer fuel setting, and valid driving criteria. Valid driving criteria is defined as having the required hammer having a hammer set greater than 3 blows per inch and less than 10 blows per inch at the driving resistance for that pile. Submit the report electronically in PDF format and the electronic data files of the PDA analysis and CAPWAP to the Geotechnical Bureau and allow seven (7) calendar days for review and approval before proceeding with driving production piles.

523.4 Measurement

The Dynamic Pile Tests performed in accordance with these Specifications will be counted separately for payment. (Refer to plans summary sheet for the required amount of PDA testing.)

523.5 Payment

The Dynamic Pile Test completed and accepted will be paid for at the Contract unit Price
This payment will be full compensation for all costs of complying with this specification,
including incidentals, additional work, and any delays incurred in conjunction therewith.

mora annig mora annama, ara anna anna annig	
Payment will be made under:	
Item No. 523. Dynamic Pile Test	Per Each

SITE LOCATION DIAGRAM		
REPORT OF GEOTECHNICAL EXPLORATION	Project No.: 10:9815	
Old Highway 41 Bridge Replacement - BFI Cobb County, Georgia	NTS	
Reference: Google Maps	Date: 5/2018	

REFERENCE NOTES FOR BORING LOGS

	DRILLING SAMPLING SYMBOLS & ABBREVIATIONS				
SS	Split Spoon Sampler	PM	Pressuremeter Test		
ST	Shelby Tube Sampler	RD	Rock Bit Drilling		
WS	Wash Sample	RC	Rock Core, NX, BX, AX		
BS	Bulk Sample of Cuttings	REC	Rock Sample Recovery %		
PA	Power Auger (no sample)	RQD	Rock Quality Designation %		
HSA	Hollow Stem Auger				

PARTICLE SIZE IDENTIFICATION			
DESIGNA	TION	PARTICLE SIZES	
Boulders	;	12 inches (300 mm) or larger	
Cobbles		3 inches to 12 inches (75 mm to 300 mm)	
Gravel:	Coarse	3/4 inch to 3 inches (19 mm to 75 mm)	
	Fine	4.75 mm to 19 mm (No. 4 sieve to ¾ inch)	
Sand:	Coarse	2.00 mm to 4.75 mm (No. 10 to No. 4 sieve)	
	Medium	0.425 mm to 2.00 mm (No. 40 to No. 10 sieve)	
	Fine	0.074 mm to 0.425 mm (No. 200 to No. 40 sieve)	
Silt & Cla	ay ("Fines")	<0.074 mm (smaller than a No. 200 sieve)	

COHESIVE SILTS & CLAYS				
UNCONFINED	_	7		
COMPRESSIVE	SPT ⁵	CONSISTENCY'		
STRENGTH, Q _P 4	(BPF)	(COHESIVE)		
<0.25	<3	Very Soft		
0.25 - <0.50	3 - 4	Soft		
0.50 - <1.00	5 - 8	Firm		
1.00 - <2.00	9 - 15	Stiff		
2.00 - <4.00	16 - 30	Very Stiff		
4.00 - 8.00	31 - 50	Hard		
>8.00	>50	Very Hard		

GRAVELS, SANDS & NON-COHESIVE SILTS									
SPT ⁵	DENSITY								
<5	Very Loose								
5 - 10	Loose								
11 - 30	Medium Dense								
31 - 50	Dense								
>50	Very Dense								

RELATIVE AMOUNT ⁷	COARSE GRAINED (%) ⁸	FINE GRAINED (%) ⁸
Trace Dual Symbol (ex: SW-SM)	<u>≤</u> 5 10	<u>≤</u> 5 10
With Adjective (ex: "Silty")	15 - 20 <u>></u> 25	15 - 25 <u>≥</u> 30

WATER LEVELS ⁶										
$\overline{\supseteq}$	WL Water Level (WS)(WD)									
-		(WS) While Sampling								
		(WD) While Drilling								
$\bar{\underline{\Psi}}$	SHW	Seasonal High WT								
<u>▼</u>	ACR	After Casing Removal								
$\bar{\underline{\nabla}}$	SWT	Stabilized Water Table								
-	DCI	Dry Cave-In								
	WCI	Wet Cave-In								

¹Classifications and symbols per ASTM D 2488-09 (Visual-Manual Procedure) unless noted otherwise.

²To be consistent with general practice, "POORLY GRADED" has been removed from GP, GP-GM, GP-GC, SP, SP-SM, SP-SC soil types on the boring logs.

³Non-ASTM designations are included in soil descriptions and symbols along with ASTM symbol [Ex: (SM**-FILL**)].

⁴Typically estimated via pocket penetrometer or Torvane shear test and expressed in tons per square foot (tsf).

⁵Standard Penetration Test (SPT) refers to the number of hammer blows (blow count) of a 140 lb. hammer falling 30 inches on a 2 inch OD split spoon sampler required to drive the sampler 12 inches (ASTM D 1586). "N-value" is another term for "blow count" and is expressed in blows per foot (bpf).

⁶The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in granular soils. In clay and cohesive silts, the determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally employed.

⁷Minor deviation from ASTM D 2488-09 Note 16.

⁸Percentages are estimated to the nearest 5% per ASTM D 2488-09.

CLIENT			JOB#			BORING	3 #		SHEET								
AECOM			10:9815				BB-1		1 OF 2								
PROJECT NAME Old Highway 41 Bridge Replacement					o Donlocomo	ARCHITECT-ENGINEER											
Bridge Bent 1						nt -											
SITE LOCATION												- CALIBRATED PENETROMETER					
Old Highway 41, Cobb County, GA								STATION			TONS/FT2						
Cobb C								111+66,14'L				1 2 3 4 5+ ROCK QUALITY DESIGNATION & RECOVERY					
P.I. #			-,								RQD% — REC.% —						
			_		DESCRIPTION OF M	ATERIAL ENGLISH UNITS						20% 40% 60% 80% 100%	_				
		ш	DIST. (IN)	î	DECORAL FICIA OF IM	, (TEI(I))E		LINGLISI		SJ E		PLASTIC WATER LIQUID LIMIT CONTENT % LIMIT 9					
F.	9	TYPE		RECOVERY (IN)	BOTTOM OF CASING	3	LO	SS OF CIRCULATION	N ∑100%	ON (- -	•					
ОЕРТН (FT)	SAMPLE	SAMPLE	SAMPLE	OVE	SURFACE ELEVATION	N 1155				VATI	WS/I	⊗ STANDARD PENETRATION					
	SAN	SAN	SAN	REC	\$\frac{4}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												
0	-				Topsoil Depth	[3"]			1155								
_	S-1	SS	18	18	(ML) SILT, red	dish brown, mo	ist, i	irm to stiff		_	1 2	5-⊗					
_										_	1						
_										_	١						
	S-2	SS	18	18						_	3	12-0 -					
5 —										 1150	5	24.9					
_	_				(SM) SILTY SA medium dense	AND, brown, mo	oist,	loose to		_	3						
_	S-3	SS	18	18	mediam dense					_	3 9	18-∞					
										_		:/ : : : :					
_	S-4	SS	18	18						_	3 2	9-8					
10 —										 1145	1 4 1						
_																	
_										_							
_																	
_						114 											
15 —	S-5	SS	18	18								21-🔆					
15 –												 					
_												l					
_										=		l					
_										_	1						
_	S-6	SS	18	18						_	1 8	14-🛇					
20 —						(PWR) PARTIALLY WEATHERED ROCK											
_					SAMPLED AS wet	SILTY SAND,	gray	ish brown,		_							
_					wet					_							
-									7. T. Y.	_							
					HORNBLENDI	E GNEISS, blac	k. w	hite, and	Vicilia	_							
25 —					gray, seamy ar	nd fractured, [R	EC=	56%,RQD=		- 1130							
	R-1	RC	48	27	24%]					_							
_										_							
l <u> </u>					HODNID! EVIS	ONE IOO !!	le.	hito carl		_							
HORNBLENDE GNEISS, black, white, and gray, seamy and fractured, [REC=30%,RQD=							_										
								1125									
											CC	ONTINUED ON NEXT PAGE	Ξ.				
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TY							OIL TYPI	ES. IN-	SITU THE TRANSITION MAY BE GRADUAL.	_							
\[\begin{align*} \frac{\text{\texit{\text{\tin}\text{\tinit}\text{\text{\text{\text{\text{\text{\tiliex{\text{\tiliex{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\texi}\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\ti					BORING STARTE		05/01/18										
						05/01/18		\dashv	CAVE IN DEPTH								
					•	RIG Dietrich D						LING METHOD 2-1/4" Hollow Stem Auger					
₹ WL RIG						I DIGUION D	00		5 Dou	·~	-111	Line Z I/+ Hollow Otelli Augel					

CLIENT					JOB # BORING #			SHEET									
AECOM					10:9815 BB-1			2 OF 2				<u></u>					
PROJECT NAME Old Highway 41 Bridge Replacement -					ARCHITECT-ENGINEER					,		LGC					
Bridge Bent 1 SITE LOCATION																→	
						,I					CALIBRATED PENETROMETER						
Old Highway 41, Cobb County, GA							STATION				TONS/FT ² 1 2 3 4 5+						
Cobb Co. DOT Project #: X2116						111+66,14'L					ROCK QUALITY DESIGNATION & RECOVERY						
P.I. #												RQD% — REC.% —					
DESCRIPTION OF MATERIAL								ENGLISH UNITS				PLASTIC	· v	VATER		LIQUID	
	o.	YPE	DIST. (IN)	RECOVERY (IN)	BOTTOM OF CASING		NATER LEVELS WATER					LIMIT	NTENT %		IMIT %		
H (FT	LE NO	L H	LE D	VER	BOTTOM OF CASING		LO	33 OF CIRCULATION	<u> </u>	R LE	9/S	⊘ ST.	ΔΝΠΔΡΓ	D PENETRAT	ION		
ОЕРТН (FT)	SAMPLE	SAMPLE TYPE	SAMPLE	ECO	SURFACE ELEVATIO	N 1155				/ATE	BLOWS/6"	W	.OWS/FT				
	κ-2		60	18	HORNBLENDE	GNEISS, blac	k. w	hite, and	37.02	<u>> ш</u>	<u> </u>	10	20	30 4	0 5	50+	
_					gray, seamy ar				110	_			:	:		:	
_					24%]				1990	_			<u>:</u>	:		:	
_					HORNBLENDE gray, seamy [R	GNEISS, blac	k, w	hite, and	MA TO			:		:		:	
					gray, seamy [K	EC=00%,KQD	=47	70]				:	1	:			
35 —	R-3	RC	60	48						— 1120 —		:	1	:		:	
										_		:	<u> </u>	:		:	
									Hill	_		:	: 1	:			
_					HORNBLENDE	GNEISS, blac	k, w	hite, and	M	_		:	: -	- 		:	
					gray, [REC=97		•	·	apple	_			:	:			
40 —	Б 4	DC.	60	-0					ala	 1115	5	:	:	:			
	R-4	RC	60	58						_							
_										_		:	:	:		:	
												:	:	:		:	
_					END OF BORII	NG @ 43'		:	:	:	•	:					
45 										_ 1110			:	:		:	
					*Note: Blows/6 measurements								:	:			
_					with 93% ER.	. IT Valado Have	, 50		-	_		:	:	:		:	
										_		:	:	•			
									ŀ	_		:	:	:		:	
_									ļ	_		:	:		•		
50 —									ļ	— 1105 —			:				
									ŀ	_		•	:	•		:	
									ŀ	_		:	:	:		:	
									ŀ	_		:	:	:		:	
									ļ	_		:	:	:		:	
55 									ļ	1100		:	:	:		:	
_										_		:		:		:	
_									-	_		•	:	:			
									-	_		:		:		:	
									ļ	_		•	:	:			
_									ļ	_			•	:		:	
60 —									ŀ	 1095	5	:	:	:		:	
									ŀ	_			:	•		:	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOU								I INDADVI INCO DET	MEEN	9011 TVD	EC IN	OITH THE TRANS	ITION 84	AV DE ODAS	NIAI		
₩L 17 WS WD BORING STARTE									ES. IN-	OITU THE TRANS	I I ION IM	AT BE GKAL	JUAL.				
₩ WL(BCR) ₩ WL(ACR) BORING COM										CAVE IN DEPTH							
₩ WL RIG Die					кіс Dietrich D	G Dietrich D-50 FOREMAN John Dodd					DRILLING METHOD 2-1/4" Hollow Stem Auger						

CLIENT							JOB	#	BORING #			SHEE	T		
AECC	MC							10:9815	BB	3-2		1 OF	2		
PROJECT	NAME	iav 4	11 R	rida	e Replacemer	nt -	ARCI	HITECT-ENGINEER							G
Bridge	e Be	nt 2		nag	Стеріасстісі									4_	TM
SITE LOC			11 (- ohk	County, GA						-()- CA		PENETRON DNS/FT ²	IETER
DOT PRO)J. #	ay 2	+1, (<u> </u>	County, GA			STATION			_	1	2	3 4	l 5 ₊ +
Cobb C	o. D0	OT Pr	oject	#: X	2116			112+92, 5'R					ALITY DES		RECOVERY
												RQD% 20%	40%	REC.% 60% 80	
			<u> </u>	_	DESCRIPTION OF M.	ATERIAL		ENGLISH		F		PLASTIC		VATER	LIQUID
F	9	ΓΥPE	DIST. (IN)	NE Z	BOTTOM OF CASING		LOS	SS OF CIRCULATION	√ 2003 H	<u>L</u> ∠		.IMIT 	CO	NTENT % —●	LIMIT %
ОЕРТН (FT)	빌	SAMPLE TYPE	JE [RECOVERY (IN)					WATER LEVELS	ELEVATION (FT)	5	⊗ 8		D PENETRAT	ION
DEP.	SAMPLE	SAM	SAMPLE	REC	SURFACE ELEVATION	N 1160			WAT	ELEV		10	BL 20	OWS/FT 30 4	0 50+
0 _					Topsoil Depth				1	160		:	:	:	i
_	S-1	SS	18	18		ILT, contains mi prown, moist, firr		and slight				<u>.</u>	:	:	:
		-			,	, - ,						3	:	:	: :
_						ND, reddish bro	wn,	moist,					25	•	•
_	S-2	SS	18	18	medium dense					1		:	: 🔅	● 32.4	:
5 —									1	155 '		:	:/	32.4	•
_	S-3	SS	18	18						4		:	i/	:	:
-	0-3		10	10						}		:	20		:
						LLY WEATHER				1	,	:	:		
_	S-4	SS	16	16		SILTY SAND, co rock fragments,				50	4	:	:	:	115/10
10 —					∖grayish brown,	moist			1	150		:	:	٦:	115/10
_						GNEISS, black and fractured, [R					1 :		:	:	:
_	R-1	RC	60	34	10%]	ina maotarea, [re		-07 70,11QD=					:	:	:
_			00	"								:	:	1	:
_											Ιi	:	:	1:	:
15 —					HORNBLENDE	GNEISS, black	. wl	nite. and	1	145	'	- 7	:		:
_					gray, seamy ar	nd fractured, [RE						- 1	:	:	:
_	R-2	RC	60	40	22%]								:		:
_	N-2	KC	00	40									:		•
_												i			:
20 —					HORNBLENDE	GNEISS, black	c. wl	nite, and	1	140		- 1	:	1	• • • • • • • • • • • • • • • • • • • •
_					gray, seamy ar	nd fractured, [RE							:		:
_		D0	00		26%]							:	:		: :
_	R-3	RC	60	41								:	:		•
												: '	:		•
25 —					HORNBI ENDE	GNEISS, blac	k w	hite and	1	135		: L	-	<u> </u>	─ ──
_					gray, [REC=94		ix, vv	riito, aria				:	:	:	
_												:	:	:	
_	R-4	RC	60	56.5									:	:	
_												:			
30 —					HORNBLENDE	GNEISS, black	, wl	nite, and	1	130		:	:	•	L;
-	1			ı	j gray, [KEC=10	0%,RQD=100%	1	i	717.71X	ı					
															T PAGE.
<u> </u>		E STR.			I LINES REPRESENT				WEEN SOIL T	YPES.	IN-SITU	THE TRAN	SITION M	AY BE GRAD	UAL.
≟ Mr [Ory		,	ws	WD⊠	BORING STARTED		05/02/18		\perp					
Ψ WL(B	CR)		<u>=</u>	WL(AC	R)	BORING COMPLET	ED	05/02/18		C	VE IN D	EPTH			
₩ WL						RIG Dietrich D-	50	FOREMAN Jo	hn Dodd	DI	RILLING	METHOD	2-1/4" ⊢	Iollow Ste	m Auger

CLIENT							JOE	3 #	BORII	NG #		SHEET			
AECO PROJECT	М							10:9815		BB-2	2	2 OF 2		<u>ന</u> ്ദ	_
PROJECT Old Hi	NAME ghw	ay 4	11 B	ridg	e Replaceme	nt -	ARC	CHITECT-ENGINEER						U N	5
Bridge SITE LOCA					<u>-</u>										Tw.
				<u>Cob</u> t	County, GA								ED PENETRON TONS/FT ²	IETER	
								STATION 112+92, 5'R				1 2	3 4		
Cobb Co	J. DC	<i>,</i> , , , , ,	oject		<u> </u>			1.2.02,010				ROCK QUALITY D	ESIGNATION 8 REC.%		
			=		DESCRIPTION OF M	ATERIAL		ENGLISH	LINITS			20% 40%	60% 80	,	
		й	DIST. (IN)	ĝ						ELS (FT)		PLASTIC LIMIT C	WATER ONTENT %		QUID MIT %
(FT)	<u>8</u>	F	E DIS	ERY	BOTTOM OF CASING		LO	SS OF CIRCULATION	V >100%	I EV	9/		•		4
ОЕРТН (FT)	SAMPLE	SAMPLE TYPE	SAMPLE	RECOVERY (IN)	SURFACE ELEVATION	DN 1160				WATER LEVELS ELEVATION (FT)	BLOWS/6"		RD PENETRAT BLOWS/FT 30 4)+
_					HORNBLENDE			hite, and	ŊĐ				:		
	R-5	RC	60	60	gray, [REC=10	0%,RQD=100%	6]		801				:		
		110	00						NS.				:		
													• • •		
35 —					HORNBLENDE	E GNEISS, blac	k, w	hite, and	ŊĠ	1125	5		:	П	
					gray, [REC=10								:		
	R-6	RC	60	60									:		
		1.0	00						HB				:		
									M				:	i	
40 —					END OF BORI	NG @ 40'			71)/2/	1120		: :	:		
													:		
					*Note: Blows/6	" are uncorrecte	ed fi	eld		_			:		
					measurements	. N-values have				_			:		
					with 93% ER.					_			:		
45 —										1115	5		:		
_										_			:		
										<u> </u>		: :	:		
										_			:		
										_			:		
50 —										1110		: :	:		
													:		
										_			:		
													:		
													:		
55 										_ 1105			:		
											Ή		:	:	
										L			:		
_													:		
													:		
										F			:	•	
60 —										1100 			:		
										<u> </u>	1		•		
	THE STRATIFICATION LINES REPRESENT THE APPROX								WEEN	SOIL TYP	ES. IN-	SITU THE TRANSITION	MAY BE GRAD	UAL.	
₩ WL(BC				WS WL(AC	WD 🛛	BORING STARTE		05/02/18			CAVE	IN DEPTH			
≟ Mr	<i>/</i> (<i>)</i>		₹ '	vvL(AC	nxj	RIG Dietrich D		05/02/18 FOREMAN Jo	hn Dr	odd		LING METHOD 2-1/4"	Hollow Ste	m Augei	
						- 5.500000	\sim		00		_ ,	· ···- · · · · · · · · · · · · · · · ·		, .ugo	

CLIENT		NAME ghway 41 Bridge Replacement - ATION ghway 41, Cobb County, GA J. # D. DOT Project #: X2116 DESCRIPTION OF MATERIA ON A COMMAND AND A C					OB#	BOR	ING #		SHEET		
AECC	M						10:9815		WB1-	2	1 OF 1		200
PROJECT	NAME	121/	11 R	rida	e Renlaceme	ot -	RCHITECT-ENGINEE	R			_		5 8
Wall 1		ay -	710	nug	c replacemen							3,	
SITE LOC	ATION			<u> </u>	0 1 01	•					-O- CALIBRA	TED PENETROM	ETER
DOT PRO	<u>Ignw</u> J.#	ay 4	41, (<u>Jobr</u>	County, GA		STATION				1 2	3 4	5+
Cobb C							111+80, 3'L				h + +	DESIGNATION 8	-
P.I. #											RQD% — 20% 40%	— REC.%	 % 100%
			2		DESCRIPTION OF M	ATERIAL	ENGLIS	H UNITS			i ' '	60% 80	+
		핊	J. (1	ĝ		_		_	WATER LEVELS ELEVATION (FT)		PLASTIC LIMIT	WATER CONTENT %	LIQUID LIMIT %
(FT)	8	۲		ERY	BOTTOM OF CASING	G L	LOSS OF CIRCULATION	ON ∑100%		9/		•	
ОЕРТН (FT)	MPLI	MPLI	MPLI	00	SURFACE ELEVATION	N 1157			WATER LEVELS ELEVATION (FT)	BLOWS/6"		ARD PENETRAT BLOWS/FT	ION
O	SA	SA	S,	쀭	- "D "					BL	10 20	30 4	0 50+
							ht miss trass		1				
_	S-1	SS	18	18					_ 1155	5 3	8-⊗		
_						0			- 1133	2		: :	
									F	2			
_	S-2	SS	18	18						2 2	6-⊗		
5 —													
	_									1	<u> </u>		
	S-3	SS	18	18					1150	WOK WOH	ў-wон \	30.9─	:
									<u> </u>		\		
	S-4	SS	18	18					<u> </u>	1	\Diamond	•	•
10 —			-10	10						1	3	:	÷
_													
_								ШШ	1145				:
_									- ''43				:
_					rragments, bro	wn, moist, very de	ense			11			65
_	S-5	SS	18	18					F	23 19	: :	: :	\Diamond
15 —										'3			
_													
					(PWR) PARTIA	ALLY WEATHER	D ROCK		1140		: :		
-					SAMPLED AS				_				
	S-6	SS	15	15	brown, moist					18 11			95/9−⊗
20 —										50/3			
_													
									 1135		: :	: :	
_					AUGER REFU	SAL @ 22'							
					*Note: Blows/6	" are uncorrected	field					•	•
						. N-values have b	een corrected		_		: :	:	÷
25 —					With 93% ER.								
_													:
									1130				
									<u> </u>				:
									<u> </u>		: :	:	:
30 —												:	:
-			l	l	I			I	⊢	I		•	•
	TH	F STR	ATIFIC	ATION	I I INES REPRESENT	THE APPROXIMATE B	BOLINDARY LINES BE	TWFFN	I SOIL TYP	FS IN-	SITU THE TRANSITIO	N MAY BE GRAD	UAI
<u></u> ₩L 1		. 5110		ws 🗆		BORING STARTED						22 01010	
						POKING STAKTED	05/01/18						
₩ WL(B	CR)		<u> </u>	WL(AC	CR)	BORING COMPLETE	D 05/01/18			CAVE	E IN DEPTH		
₩ WL						RIG Dietrich D-50	0 FOREMAN J	ohn D	odd	DRIL	LING METHOD 2-1/4	l" Hollow Ster	n Auger

CLIENT						JO	B #	BORING #		SHEET		
AECO	M						10:9815	WB ²	I - 3	1 OF 1	5	200
PROJECT	NAME	iav 4	11 R	rida	e Replaceme	nt -	CHITECT-ENGINEER	2		•		
Wall 1		ay -	710	nug	c replacemen							Tw.
SITE LOCA	ATION			<u> </u>	0 1 01	•					ED PENETROM TONS/FT ²	ETER
DOT PRO	I gnw J. #	ay 4	41, (<u>اهاه ک</u>	County, GA		STATION			1 2	3 4	5+
Cobb C							111+53,40'L			ROCK QUALITY D		-
P.I. #										RQD% — -	— REC.%	100%
			2		DESCRIPTION OF M	ATERIAL	ENGLISH		\top	20% 40%	60% 809	•
		PE	DIST. (IN)	ĝ		_		ELS	BLOWS/6"	PLASTIC LIMIT C	WATER CONTENT %	LIQUID LIMIT %
(FT)	S N	7		ERY	BOTTOM OF CASING	G LO	OSS OF CIRCULATIO	<u>N ∑100%</u> }	2 5		•	
ОЕРТН (FT)	SAMPLE	SAMPLE TYPE	SAMPLE	RECOVERY (IN)	SURFACE ELEVATION	DN 1155		WATER LEVELS	BLOWS/6"		.RD PENETRATI BLOWS/FT	ION
DE OF	SA	SA	SA	A.				§ i		10 20	30 40	50+
					Topsoil Depth	[8"] SILT, contains sligh	nt mica and	**** ''			: :	:
_	S-1	SS	18	18	rock fragments	s, brown to reddish			4 3	9-⊗	: :	:
					stiff				3	<u> </u>	: :	:
_					-				5	.\		:
_ =	S-2	SS	18	18					3	12-🛇	3	:
5 —					(CM) CH TV C	NID santains miss		11	50	24	.5	:
	C 2		40	40		AND, contains mica dish brown, moist,			7		<u>\</u> .	:
	S-3	SS	18	18	to very dense				9		28	:
_												50
	S-4	SS	18	18					10 14			53 ⊗
10 —								<u> </u>	45 ²⁰			
										: :	: :	
					(5).(5).5.5.5.							
_						ALLY WEATHERE SILTY SAND, bro					: :	
	S-5	SS	11	11	moist	CIETT O/MAD, DIO	wii to giay,		18	: :	: :	78/5-⊗
45	3-3	33	11	11	-				50/5		: :	70/3 ⊗
15 —								11	40			:
										: :	: :	:
					AUGER REFU	SAL @ 17'						
											: :	:
_					*Note: Blows/6	" are uncorrected t	field			: :	: :	:
20 —						s. N-values have be	een corrected	11	35		: :	:
					with 93% ER.						: :	:
										: :	: :	:
_											: :	:
												•
25 —								<u> </u>	30	: :	: :	:
								<u>E</u> ''			: :	:
_												:
										: :	: :	:
												:
30 —								11	25	: :	<u>: :</u>	:
	TH	E STR	ATIFIC	OITA	N LINES REPRESENT	THE APPROXIMATE BO	OUNDARY LINES BE	TWEEN SOIL T	PES. IN-	SITU THE TRANSITION	MAY BE GRAD	UAL.
∰ WL C	ry		,	ws□	WD⊠	BORING STARTED	05/01/18					
₩ WL(BC	CR)		<u> </u>	WL(AC	CR)	BORING COMPLETED	05/01/18		CAVE	E IN DEPTH		
₩ WL						RIG Dietrich D-50) FOREMAN J	ohn Dodd	DRIL	LING METHOD 2-1/4"	Hollow Ster	n Auger

CLIENT						JOB	#	BORING	#		SHEET	
AECO	М						10:9815	Ιv	VB2-	1	1 OF 2	
PROJECT	NAME	121/	11 R	rida	e Replacement -	ARC	CHITECT-ENGINEER			•	<u> </u>	
Wall 2		ay -	+1 D	nug	e Nepiacement -							, N
SITE LOCA	ATION				0 1 01							D PENETROMETER
DOT PRO	<u>ghw</u> J. #	ay 4	1 1, (<u>Jobt</u>	County, GA		STATION				1 2	ONS/FT ² 3 4 5+
Cobb C	o. DC	OT Pr	oject	#: X2	2116		113+35,32'R					SIGNATION & RECOVERY
P.I. #											RQD% — — 20% 40%	REC.% ——— 60% 80% 100%
			<u> </u>		DESCRIPTION OF MATERIAL		ENGLISH I	JNITS			' '	WATER LIQUID
		TYPE	DIST. (I	<u>S</u>	_			ŭ	3 E			NTENT % LIMIT %
(FT)	В	ΕTY	Ш	ÆRY	BOTTOM OF CASING	LO	SS OF CIRCULATION	1 200%		.9/9		
ОЕРТН (FT)	SAMPLE NO	SAMPLE -	SAMPLE	RECOVERY (IN)	SURFACE ELEVATION 1162			1 <u>710</u> 2	WATER LEVELS ELEVATION (FT)	BLOWS/6"		D PENETRATION LOWS/FT
0	/S	/S	Ś	R	Topsoil Depth [8"]		k	/	<u>`</u>	BI	10 20	30 40 50+
					(MH POSSIBLE FILL) SAND	Y EL	ASTIC SILT,		_	3		
	S-1	SS	18	18	contains mica, reddish brown	, moi	st, firm to	Ⅲ⊫	- 1160	2	8-⊗	
_					very stiff			$\parallel \parallel \parallel$	_			
									_	2		
5 —	S-2	SS	18	18					_	3 6	14-⊗	29.1
_											: \:	
_	S-3	SS	18	18					_	4 6	23-⊗	
									- 1155	9		
					(SM) SILTY SAND, contains				_	9	: :	
	S-4	SS	18	18	fragments, moist, loose to me	dium	n dense		-	5	22-🔅	45.1-●
10 —									_	9	/	
_									-		: /:	
_								-	- 1150			
									_			
	۰.	SS	18	10					_	3 2	9-⊗	
15 —	S-5	33	10	18					_	4	9-0	
									_			
_					(PWR) PARTIALLY WEATHE SAMPLED AS SILTY SAND,				- 1145			\ <u>\</u>
_					contains slight rock fragments				_			
	0.0		40	40						11		
	S-6	SS	13	13					,	14 50/1		♥ 99/7
20 —					HORNBLENDE GNEISS, bla				-			
					gray, seamy and fractured, [R 29%]	REC=	63%,RQD=		_			
_	R-1	RC	60	38	2070]				- 1140			
									-			
									-			
25 —					HORNBLENDE GNEISS, bla	ck w	hite and gray		-			
					seamy, [REC=92%,RQD=879		rine and gray,		_		: :	
									- 1135			
	R-2	RC	60	55.5					_			
									_			
30 —					/HORNBLENDE GNEISS, bla	ck, w	hite and gray,		_			
					[REC=98%,RQD=98%]					l l	: :	<u>: : : </u>
										CC	ONTINUED O	N NEXT PAGE.
	TL	F STP	ATIFIC	AOITA:	LINES REPRESENT THE APPROXIMAT	TE BO	LINDARY I INFS RET	WEEN SO) TVPI			
V 18/1 2		_ 0110								_0. 114-	S. S THE TRANSPORT	JE OIO IDO/IE.
₩L 2				ws 🗌	WD⊠ BORING STARTE	ט	05/03/18		\dashv			
₩ WL(B0	CR)		<u> </u>	WL(AC	R) BORING COMPL	ETED	05/03/18			CAVE	IN DEPTH	
≟ Mr					RIG Dietrich D	0-50	FOREMAN JO	hn Dod	d	DRILI	LING METHOD 2-1/4" F	Hollow Stem Auger

CLIENT							JOB	#	BORI	ING #		SHEE	ΞT			
AECO	М							10:9815		WB2-	1	2 OF	2		<u>A</u>	_
PROJECT.	NAME	iav 4	11 R	rida	e Replacemer	nt -	ARC	HITECT-ENGINEER				•				<u> </u>
Wall 2			יו	nug	c replacemen									3		<i>)</i> ≣~
			14 0	_	- Carrati								LIBRATED	PENETROI DNS/FT ²	METER	
DOT PRO	<u>griw</u> J. #	ay 4	+ I , C	JODE	County, GA			STATION				1	2		4 5,	+
Cobb Co	o. DC)T Pr	oject	#: X2	2116			113+35,32'R						SIGNATION		RY
F.I. #												RQD% 20%	40%	REC.%	 0% 100	1%
			(<u>N</u>	_	DESCRIPTION OF MA	ATERIAL		ENGLISH	UNITS			PLASTIC	, , , ,	VATER	LI	QUID
	Q	YPE	DIST. (IN)	Ž ∑	BOTTOM OF CASING		10	SS OF CIRCULATIO	u >100%	VELS		LIMIT L	СО	NTENT %	LIN	∕IIT % ⊣
H (F)	N H	ᄪ	H H	VER				oo or ontoopynor	· / / / /	ATIO	.9/S/	' ⊗ \$	STANDARI	D PENETRA	TION	'
ОЕРТН (FT)	SAMPLE	SAMPLE TYPE	SAMPLE	RECOVERY (IN)	SURFACE ELEVATION	N 1162				WATER LEVELS ELEVATION (FT)	BLOWS/6"	•	BL	.OWS/FT		
	0)	0)	0)	ш.	HORNBLENDE	GNEISS, blac	k, w	hite and gray,	IIIII.		<u>"</u>	10	20	30 4	10 50	+
_					[REC=98%,RQ	D=98%]			ŊŊ	1130		:		:		
_	R-3	RC	60	59						_		:		:		
									ista.			:				
35 —												:	:	:	: :	
					END OF BORII	NG @ 35'				_		:		:		
_										_ 1125		:		:		
40					*Note: Blows/6 measurements							:		:		
_					with 93% ER.	. IN-Values Have	, 500	Sir corrected				•		:	: :	
–												:	:	:	: :	
40 —												:		:		
_										_		:	:	:		
										1120		:		:		
_										_		:		:		
45 —												:			: :	
										_		:	:	:	: :	
										1115		:		:		
_										_		:		:		
										_		:				
50 —												:	:	:	: :	
													:	:		
_										1110		•			: :	
												:	:	:	: :	
													:	:		
55 —												:		:		
55												:		:		
										_		:		:		
										1105		:				
												:		:	: :	
												:	:	:	: :	
60 —										_		:		:	: :	
\dashv					1					Ē	<u> </u>	:		•	: :	
		- 6		ATIC		THE ADDROVE:		INIDADY (INIT T	W.E.	100" = ==	FO #**	NTI THE ::	IOITIO	AV 55 65	2114.	
∇ •		STRA			LINES REPRESENT				vveeN	SOIL TYPI	ES. IN-S	SITU THE TRAN	ISTION M	AY BE GRAI	JUAL.	
₩ WL 2				NS 🗌		BORING STARTEI		05/03/18								
₩ WL(BC	CR)		<u> </u>	NL(AC	R)	BORING COMPLE	TED	05/03/18			CAVE	IN DEPTH				
₩ WL						RIG Dietrich D	-50	FOREMAN JO	hn D	odd	DRILL	ING METHOD	2-1/4" H	lollow Ste	m Auger	

CLIENT						J	ЮB	#	BORIN	NG #		SHEET				
AECO	M							10:9815		WB2	-2	1 OF 1		F	n _a	
PROJECT	NAME	ay 4	41 B	Brida	e Replacemer	nt -	ARC	HITECT-ENGINEER								
Wall 2		-			· .							I -		5		7∞
			41, (Cobb	County, GA							–⊖– CALIBF		PENETROM NS/FT ²	ETER	
								STATION 113+02,30'L				1 2		3 4	·	
Cobb Co	<u>0. D</u> (<u> </u>	Ojeci	ι π. Λ.	2110							ROCK QUALIT RQD% —	- —	REC.%		
			Î		DESCRIPTION OF M	ATERIAL		ENGLISH	UNITS			20% 409		60% 80	•	
	÷	PE	DIST. (IN)	<u> </u>		_				ELS (FT)		PLASTIC LIMIT		ATER ITENT %		QUID MIT %
(FT)	МО	ΕTY	E DIS	/ERY	BOTTOM OF CASING		LO	SS OF CIRCULATION	N ∑100%>	? LEV	9/9			•		-
ОЕРТН (FT)	SAMPLE	SAMPLE TYPE	SAMPLE	RECOVERY (IN)	SURFACE ELEVATION					WATER LEVELS			BLC	PENETRAT DWS/FT 30 4)+
	∖S-1	SS	2	2	(PWR) PARTIA SAMPLED AS	LLY WEATHER SANDY SILT, co	EC onta	ROCK ains slight		114 	78/2				50/2-⊗	3
	\3-1	33				el fragments, gray				_	10,2					
_					HORNBLENDE	GNEISS, black	, w	hite, and		_					\neg	
					gray, seamy ar 43%]	nd fractured, [RE	C=	87%,RQD=		— - 			1			
)	5 — R-1 RC 60 52 HORNBLENDE GNE gray, [REC=97%, RQI										٩		l I			
_										_		: :			. :	
_												: :		<u>:</u> _ :	₋ └_ :	
_							, W	hite, and		_						
10 —										_ 113	5				. :	
_	R-2	RC	60	58											. :	
_					END OF BORI	NG @ 13'			C/(,7/C)	_					. !	
_										_		: :			:	
15 —						are uncorrected					0				:	
_					with 93% ER.	. N-values have	bee	en corrected		_					. :	
														: :	. :	
_																
20 —										_ 112	5					
_										_					. :	
_										_					:	
_															. :	
										_		: :			. :	
25 —										112	0	: :		: :	:	
_																
_										_						
_										_					. :	
										Ξ.					:	
30 —										 111 	5			: :		
		E STR	ATIFIC	CATION	LINES REPRESENT	THE APPROXIMATE	во	UNDARY LINES BET	WEEN	SOIL TY	PES. IN-	SITU THE TRANSITI	ION MA	Y BE GRAD	UAL.	
¥ WL D				ws□	WD 🖾	BORING STARTED		05/03/18								
₩ WL(BC	CR)		<u>=</u>	WL(AC	CR)	BORING COMPLET		05/03/18				E IN DEPTH				
₩ WL						RIG Dietrich D-5	50	FOREMAN Jo	hn Do	odd	DRIL	LING METHOD 2-1	/4" H	ollow Ster	n Auger	r

Sample Sample Depth MC1 Soil Atterberg Limits Percent Moisture - Density (Corr.)5													
Sample Source	Sample Number	Depth (feet)	MC1 (%)	Soil Type ²	LL	PL	PI	Passing No. 200 Sieve ⁴		Optimum Moisture (%)	CBR Value ⁶	Other	
BB-1													
	S-2	3.5 - 5.0	24.9	ML	46	38	8	96.1					
3B-2													
	S-2	3.5 - 5.0	32.4	SM				33.9					
WB1-2													
	S-3	6.0 - 7.5	30.9	ML				54.1					
WB1-3													
	S-2	3.5 - 5.0	24.3	ML				59.2					
NB2-1													
	S-2	3.5 - 5.0	29.1	MH Possible Fill	50	34	16	87.6					
	S-4	8.5 - 10.0	45.1	SM				46.7					

Laboratory Testing Summary

Notes: 1. ASTM D 2216, 2. ASTM D 2487, 3. ASTM D 4318, 4. ASTM D 1140, 5. See test reports for test method, 6. See test reports for test method

Definitions: MC: Moisture Content, Soil Type: USCS (Unified Soil Classification System), LL: Liquid Limit, PI: Plastic Limit, P

Project No. 10:9815

Project Name: Old Highway 41 Bridge Replacement - BFI

ECS SOUTHEAST, LLP

1281 Kennestone Circle, NE, Suite 200 Marietta, GA 30066 Phone: (770) 590-1971

Phone: (770) 590-1971
Fax: (770) 590-1975

PHOTO LOG

Project Name: Old Highway 41 Bridge Replacement Project Number: 10:9815

Photo 1: Boring BB-1 (24'-28') Recovery = 56%, RQD = 24%

Photo 2: Boring BB-1 (28'-33') Recovery = 30%, RQD = 24%

PHOTO LOG

Project Name: Old Highway 41 Bridge Replacement Project Number: 10:9815

Photo 3: Boring BB-1 (33'-38') Recovery = 80%, RQD = 47%

Photo 4: Boring BB-1 (38'-43') Recovery = 97%, RQD = 80%

PHOTO LOG

Project Name: Old Highway 41 Bridge Replacement Project Number: 10:9815

Photo 1: Boring BB-2 (10'-15') Recovery = 57%, RQD = 10%

Photo 2: Boring BB-2 (15'-20') Recovery = 67%, RQD = 22%

PHOTO LOG

Project Name: Old Highway 41 Bridge Replacement Project Number: 10:9815

Photo 3: Boring BB-2 (20'-25') Recovery = 68%, RQD = 26%

Photo 4: Boring BB-2 (25'-30') Recovery = 94%, RQD = 91%

PHOTO LOG

Project Name: Old Highway 41 Bridge Replacement Project Number: 10:9815

Photo 5: Boring BB-2 (30'-35') Recovery = 100%, RQD = 100%

Photo 6: Boring BB-2 (35'-40') Recovery = 100%, RQD = 93%

PHOTO LOG

Project Name: Old Highway 41 Bridge Replacement Project Number: 10:9815

Photo 1: Boring WB2-1 (20'-25') Recovery = 63%, RQD = 29%

Photo 2: Boring WB2-1 (25'-30') Recovery = 92%, RQD = 87%

PHOTO LOG

Project Name: Old Highway 41 Bridge Replacement Project Number: 10:9815

Photo 3: Boring WB2-1 (30'-35') Recovery = 98%, RQD = 98%

PHOTO LOG

Project Name: Old Highway 41 Bridge Replacement Project Number: 10:9815

Photo 1: Boring WB2-2 (3'-8') Recovery = 87%, RQD = 43%

Photo 2: Boring WB2-2 (8'-13') Recovery = 97%, RQD = 97%

Job No. 179031-1

Report on: Standard Penetration Test Energy Measurements Jonesboro, GA

Prepared for Big Dog Geotech By Thomas G. Hyatt, P.E. and Joel S. Webster, E.I. June 20, 2017

www.GRLengineers.com

info@GRLengineers.com

June 20, 2017

John Dodd Big Dog Geotech P.O. Box 928 Cumming, GA 30028

Re: Standard Penetration Test Energy Measurements

Jonesboro, GA GRL Job No. 179031-1

Dear Mr. Dodd,

This report presents results of energy measurements obtained on June 8, 2017 during Standard Penetration Tests (SPT) sampling. Two automatic hammers mounted on two separate Diedrich D-50 dill rigs that were tested generally following ASTM D4633-10 standards. All dynamic tests were performed on AWJ drill rods. GRL Engineers, Inc. obtained the dynamic measurements with an instrumented AW subsection that had AWJ adapters and a Model 8G Pile Driving Analyzer®. This report describes the testing procedures and summarizes the test results. Appendix A describes our measurement and analysis methods, Appendix B contains calibration information for the gages and equipment used, and Appendix C is a summary of the field data.

PURPOSE AND SCOPE OF WORK

At the request of Big Dog Geotech, GRL conducted SPT energy measurements in Jonesboro, GA according to ASTM D4633-10. Specifically, we recorded SPT energy measurements at five-foot sample intervals between 18.5 and 43.5 feet below the existing ground surface. SPT samples were taken every five feet from the ground surface until a boring depth of about 43.5 feet was reached. All SPT samples were driven for a total of 3 six-inch increments, or 1.5 feet.

<u>EQUIPMENT</u>

Drilling and SPT Hammer Equipment

Diedrich D-50 (Serial # 380)

SPT energy measurements were made on an automatic hammer mounted on a Diedrich D-50 drill rig. The drilling method used to advance the boring was hollow stem auger. Energy measurements for this drill rig were collected at a borehole located in Jonesboro, GA. SPT energy measurements were performed at 5-foot sampling intervals between 18.5 and 40.0 feet. A total of five energy measurement events were performed for this drill rig.

Diedrich D-50 (Serial # 404)

SPT energy measurements were made on an automatic hammer mounted on a Diedrich D-50 drill rig. The drilling method used to advance the boring was hollow stem auger. Energy measurements for this drill rig were collected at a borehole located in Jonesboro, GA. SPT energy measurements were performed at 5-foot sampling intervals between 18.5 and 43.5 feet. A total of six energy measurement events were performed for this drill rig. The SPT energy measurements performed from 33.5 to 40 feet did not meet the ASTM D4633-10 specifications for blow counts and were not considered in the calibration of this drill rig.

Instrumentation

A Model 8G Pile Driving Analyzer (PDA) data acquisition system (SN# 4613LE) was used to collect and process the dynamic measurements of force and velocity. The data was collected using a two foot long section of AW rod subsection (SN# 246AW) with a cross sectional area of 1.21 square inches and instrumented with two full bridge foil resistance strain gages and two piezoresistive accelerometers mounted in the midpoint location of the instrumented rod. Couplings were used to convert the threads from the AW rod subsection to the AWJ rod string.

Analog signals from the strain gages and accelerometers were conditioned, digitized, stored and processed with the PDA. The sampling frequency used during the SPT testing was 50 kHz. Selected output from the PDA for each recorded impact included the energy transfer ratio (ETR), maximum rod top velocity (VMX), maximum energy transfer (EFV), maximum rod top force (FMX), and the hammer operating rate (BPM).

MEASUREMENTS AND CALCULATIONS

FV Method (EFV)

Energy transfer to the PDA gage location, EFV, was computed by the PDA using force, F(t), and velocity, v(t), records as follows:

$$EFV = \int_{a}^{b} F(t) \cdot v(t) dt$$

The time "a" corresponds to the start of the record when the energy transfer begins, and "b" is the time at which energy transferred to the rod reaches a maximum value. The FV Method is currently recognized in ASTM D4633-10, and is the theoretically correct result; therefore, no other energy calculation methods are reported.

Corrected SPT number (N₆₀)

While the primary purpose of SPT energy testing is to calculate the maximum transferred energy (ETR) of each hammer blow, the overall average EFV value can be used to calculate the corrected SPT number (N_{60}). To adjust the SPT N-values for hammer performance, the following correction as suggested by Seed for N-value adjustment to 60% transfer efficiency (e.g. 210 ft-pounds) was used:

Where:

 N_{60} = Corrected N-value

 E_m = overall average measured energy transfer (EFV)

N_m =number of blows for last 12 inches of sampler penetration

A general introduction to dynamic SPT testing methods is included in this report as Appendix A. References for more detailed descriptions of our testing and analysis methods are available upon request.

Any cross-sectional area difference between the GRL rod subsection and the drill rods, any loose connections or changes in area at section joints, or any cross-sectional area differences between the individual drill rod sections will result in stress wave reflections that can potentially influence the energy transfer. The EFV transferred energy calculation method, utilizing both force and velocity records, is theoretically correct and gives energy transfer results that are not adversely affected by cross-sectional area changes or loose connectors. The EFV results are included in Appendix C for all records collected and accepted after checking them for consistency.

RESULTS

Upon return to the office, the records collected by the PDA were checked for consistency and accuracy. For example, records from very weak startup or final impacts were not included in average results. Appendix C contains a representative plot of force and normalized velocity versus time, as well as tables of PDA results for all hammer blows at each dynamically monitored sampling depth. The results include the EFV (transferred energy by the FV method, as recommended by ASTM D4633-10), ETR (energy transfer efficiency for the EFV method), BPM (hammer operating rate), FMX (maximum rod top force) and VMX (maximum rod top velocity). The tables show statistical summaries for the final two 6 inch increments over which the SPT N value is calculated. At the end of each table is a statistical evaluation of these results which include the average and standard deviation.

$$N_{60} = \left(\frac{E_m}{210}\right) N_m$$

Page 4

The table below and the summary tables in Appendix C summarize the average transferred energy values calculated by the EFV method. The records consist of averaged hammer blows from the last 12 inches (i.e. N value) at each dynamically monitored sampling depth. The "energy transfer ratio" (ETR) is defined as the ratio of maximum transferred energy EFV divided by the theoretical hammer potential energy of 350 ft-lbs (i.e., computed per the 140 lb SPT hammer and the standard 30 inch drop as specified by ASTM D1586-08). The average hammer operating rate is reported in blows per minute (BPM). A summary of the dynamic measurements of the energy transfer to the drill rods using the EFV equation is provided in the table below.

Drill Rig	Avg. EFV (ft-lbs)	Avg ETR (%)	Range of EFV (ft-lbs)	Range of ETR (%)
Diedrich D-50 SN 380	330	94	309 – 367	88 – 105
Diedrich D-50 SN 404	325	93	302 – 343	86 – 98

CONCLUSIONS

Based upon the dynamic test data obtained, the following conclusions are presented:

- Loose connections in the drill string were sometimes observed in the force and velocity records. However, energy transfer values calculated using the EFV equation are not adversely affected by the connectors and therefore are considered a better indication of transferred energy.
- 2. Dynamic measurements of the transferred energy to the drill rods using the EFV equation ranged from 309 to 367 ft-lbs for the Diedrich D-50, SN 380 drill rig. This corresponds to a transfer efficiency ranging from 88 to 105% of the SPT hammer energy of 350 ft-lbs.
- 3. Dynamic measurements of the transferred energy to the drill rods using the EFV equation ranged from 302 to 343 ft-lbs for the Diedrich D-50, SN 404 drill rig. This corresponds to a transfer efficiency ranging from 86 to 98% of the SPT hammer energy of 350 ft-lbs.
- 4. The average transferred energy (EFV) and energy transfer ratio (ETR) for the Diedrich D-50 drill rigs tested was as follows:

Diedrich D-50, SN 380: Average EFV = 330 ft-lbs; Average ETR = 94%

Diedrich D-50, SN 404: Average EFV = 325 ft-lbs; Average ETR = 93%

Please review both ASTM D4633-10 and ASTM D1586-08 prior to applying these test results. The energy calibrations reported herein are valid for the same hammer/drill rig, with the same drill operator, same anvil dimensions, and same drilling methods.

We appreciate the opportunity to be of assistance to you on this project. Please contact our office should you have any questions regarding this submittal, require additional information, or if we may be of further service.

No. PE041302 PROFESSIONAL

Sincerely,

GRL Engineers, Inc.

Thomas G. Hyatt, P.E.

Joel S. Webster, E.I.

TGH:JSW:dms

PROJECT NAME: Old Highway 41 Bridge Replacement

PROJECT NO.: 10:9815

N bar = 40

Layer	Layer Top	Layer			N-val	ues at B	orings				
Тор	Elevation	Bottom	BB-1						N _{AVG}	$\mathbf{D_i}$	D _i /N _A
0	1155	2.5	5						5.00	2.5	0.50
2.5		5	12						12.00	2.5	0.21
5		7.5	18						18.00	2.5	0.14
7.5		10	9						9.00	2.5	0.28
10		15	21						21.00	5	0.24
15		20	14						14.00	5	0.36
20		25	100						100.00	5	0.05
25		30	100						100.00	5	0.05
30		35	100						100.00	5	0.05
35		40	100						100.00	5	0.05
40		45	100						100.00	5	0.05
45		50	100						100.00	5	0.05
50		55	100						100.00	5	0.05
55		60	100						100.00	5	0.05
60		65	100						100.00	5	0.05
65		70	100						100.00	5	0.05
70		75	100						100.00	5	0.05
75		80	100						100.00	5	0.05
80		85	100						100.00	5	0.05
85		90	100						100.00	5	0.05
90		95	100						100.00	5	0.05
95		100	100						100.00	5	0.05

76.32 100 2.52

N bar = 40

		T		
		AVERAGE PROP	ERTIES IN TOP 100 ft, AS	PER SECTION 1615.1.5
SITE	SOIL PROFILE NAME	Soil shear wave velocity,	Standard Penetration	Soil Undrained Shear Strength,
CLASS		Vs-bar, (ft/s)	Resistance, N-bar	Su-bar , (psf)
A	Hard Rock	Vs-bar > 5,000	Not Applicable	Not Applicable
В	Rock	2,500 < Vs-bar ≤ 5,000	Not Applicable	Not Applicable
С	Very Dense Soil and Soft Rock	$1,200 < Vs$ -bar $\leq 2,500$	N-bar > 50	Su-bar ≥ 2000
D	Stiff Soil Profile	600 ≤ Vs-bar ≤ 1,200	15 ≤ N-bar ≤ 50	1,000 ≤ Su-bar ≤ 2000
Е	Soft Soil Profile	Vs-bar < 600	N-bar < 15	Su-bar < 1,000
Е	-	Any profile with more than 10 fee 1. Plaxticity Index, PI > 20; 2. Moisture content, w≥ 40%, an 3. Undrained shear strength, Su-b	ad	racteristics:
F	-	highly sensitive clays, collapsible	illure or collapse under seismic loweakly cemented soils. ys (H > 10 ft or peat and/or highlys (H > 25 ft with plasticity index	ading such as liquefiable soils, quick and ly organic caly where H = thickness of

PROJECT NAME: Old Highway 41 Bridge Replacement

PROJECT NO.: 10:9815

N bar = 64

Layer	Layer Top	Layer			N-valu	es at Bo	orings				
Тор	Elevation	Bottom	BB-2						N _{AVG}	$\mathbf{D_{i}}$	D _i /N _{AV}
0	1160	2.5	6						6.00	2.5	0.42
2.5		5	25						25.00	2.5	0.10
5		7.5	20						20.00	2.5	0.13
7.5		10	100						100.00	2.5	0.03
10		15	100						100.00	5	0.05
15		20	100						100.00	5	0.05
20		25	100						100.00	5	0.05
25		30	100						100.00	5	0.05
30		35	100						100.00	5	0.05
35		40	100						100.00	5	0.05
40		45	100						100.00	5	0.05
45		50	100						100.00	5	0.05
50		55	100						100.00	5	0.05
55		60	100						100.00	5	0.05
60		65	100						100.00	5	0.05
65		70	100						100.00	5	0.05
70		75	100						100.00	5	0.05
75		80	100						100.00	5	0.05
80		85	100						100.00	5	0.05
85		90	100						100.00	5	0.05
90		95	100						100.00	5	0.05
95		100	100						100.00	5	0.05

88.68 100

100 1.57

N bar = 64

		A VED A CE DD OD	EDTIES IN TOP 100 & AS	DED CECTION 1/15 1 5
SITE	SOIL PROFILE NAME	Soil shear wave velocity,	ERTIES IN TOP 100 ft, AS Standard Penetration	Soil Undrained Shear Strength,
CLASS		J /	~	٠
CLASS		Vs-bar, (ft/s)	Resistance, N-bar	Su-bar , (psf)
Α	Hard Rock	Vs-bar > 5,000	Not Applicable	Not Applicable
В	Rock	2,500 < Vs-bar ≤ 5,000	Not Applicable	Not Applicable
С	Very Dense Soil and Soft Rock	$1,200 < \text{Vs-bar} \le 2,500$	N-bar > 50	Su-bar ≥ 2000
D	Stiff Soil Profile	600 ≤ Vs-bar ≤ 1,200	15 ≤ N-bar ≤ 50	1,000 ≤ Su-bar ≤ 2000
Е	Soft Soil Profile	Vs-bar < 600	N-bar < 15	Su-bar < 1,000
Е	-	 Any profile with more than 10 feet of soil having the following characteristics: 1. Plaxticity Index , PI > 20; 2. Moisture content , w ≥ 40%, and 3. Undrained shear strength, Su-bar < 500 psf 		
F	_	highly sensitive clays, collapsible	uilure or collapse under seismic lo weakly cemented soils. ys (H > 10 ft or peat and/or highlys (H > 25 ft with plasticity index	ading such as liquefiable soils, quick and ly organic caly where H = thickness of

Nominal Pile Driving Resistance - C10.7.3.7

Project Name: Old Highway 41 Bridge Replacement

Project Number: 10:9815
Project Location: Cobb County

Boring Number: WB1-2

Bent (EB/IB): EB Bent 1
Pile Type: H-Pile 14X117

Factored Load:

Nominal Pile Driving Resistance
Resistance Factor (10.5.5.2.3.1) phi(dyn) 0.65 PDA
Load factor for downdrag (1.05, 3.4.1-2) yp
Downdrag load per pile (10.7.3.7) DD
Side resistance for the down drag zone (10.7.3.7) Rsdd
Side resistance for the scour zone (10.7.3.6) Rsscour

Rndr = (Factored Load/phi(dyn))+((yp*DD)/phi(dyn))+Rsdd+Rsscour

Rndr (Service Limit S	State) 502	Rndr(Strength Limit State) 713
phi(dyn)	0.65	phi(dyn) 0.65
ур	0.75	ур 0.75
DD	28	DD 28
Rsdd	16.3	Rsdd 16.3
Rsscour	0	Rsscour 0
Factored Load	295	Factored Load 432

Nominal Pile Driving Resistance - C10.7.3.7

Project Name: Old Highway 41 Bridge Replacement

Project Number: 10:9815
Project Location: Cobb County

Boring Number: BB-2

Bent (EB/IB): EB Bent 2
Pile Type: H-Pile 14X117

Factored Load:

Nominal Pile Driving Resistance
Resistance Factor (10.5.5.2.3.1) phi(dyn) 0.65 PDA
Load factor for downdrag (1.05, 3.4.1-2) yp
Downdrag load per pile (10.7.3.7) DD
Side resistance for the down drag zone (10.7.3.7) Rsdd
Side resistance for the scour zone (10.7.3.6) Rsscour

Rndr = (Factored Load/phi(dyn))+((yp*DD)/phi(dyn))+Rsdd+Rsscour

Rndr (Service Limit S	tate) 454	Rndr(Strength Limit State) 665
phi(dyn)	0.65	phi(dyn) 0.65
ур	0.75	yp 0.75
DD	0	DD 0
Rsdd	0	Rsdd 0
Rsscour	0	Rsscour 0
Factored Load	295	Factored Load 432

9815, Boring BB-1- Rev1-19. ap7o APILE for Windows, Version 2015.7.4 Serial Number: 166870365 A Program for Analyzing the Axial Capacity and Short-term Settlement of Driven Piles under Axial Loading. (c) Copyright ENSOFT, Inc., 1987-2015 All Rights Reserved ______ This program is licensed to: ECS Southeast, LLC. Marietta, GA Time and Date of Analysis Date: January 10, 2019 Time: 10:34:28 1 * INPUT INFORMATION * Old Highway 41 Bridge Replacement Boring BB-1 (Bent 1) DESI GNER : Robert Barnes JOB NUMBER: Cobb DOT Project No.: X2116 METHOD FOR UNIT LOAD TRANSFERS: - FHWA (Federal Highway Administration) Unfactored Unit Side Friction and Unit Side Resistance are used. COMPUTATION METHOD(S) FOR PILE CAPACITY: - FHWA (Federal Highway Administration) TYPE OF LOADING: COMPRESSION

9815, Boring BB-1- Rev1-19. ap7o

PILE TYPE:

H-Pile/Steel Pile

DATA FOR AXIAL STIFFNESS:

- MODULUS OF ELASTICITY = 0.290E+08 PSI - CROSS SECTION AREA = 34.40 IN2

NONCIRCULAR PILE PROPERTIES:

- TOTAL PILE LENGTH, TL = 60.00 FT.
- PILE STICKUP LENGTH, PSL = 20.50 FT.
- ZERO FRICTION LENGTH, ZFL = 0.00 FT.
- PERIMETER OF PILE = 58.19 IN.
- TIP AREA OF PILE = 211.52 IN2
- INCREMENT OF PILE LENGTH USED IN COMPUTATION = 1.00 FT.

SOIL INFORMATIONS:

DEPTH	SOI L TYPE	LATERAL EARTH PRESSURE	EFFECTIVE UNIT WEIGHT	FRICTION ANGLE DEGREES	BEARI NG CAPACI TY FACTOR
FT.	1111	I KESSUKE	LB/CF	DEGREES	TACTOR
0.00	SAND	0.00	115.00	28.00	0.00
5. 50	SAND	0.00	115. 00	28. 00	0.00
5. 50	SAND	0.00	120.00	36.00	0.00
20.00	SAND	0.00	120. 00	36. 00	0. 00
20.00	SAND	0.00	130.00	40.00	0.00
24. 00	SAND	0.00	130. 00	40. 00	0. 00
24.00	SAND	0.00	140.00	42.00	0.00
33. 00	SAND	0.00	140. 00	42.00	0. 00
33. 00	SAND	0.00	150. 00	45. 00	0. 00
50. 00	SAND	0.00	150. 00	45. 00	0.00

MAXI MUM UNI T	MAXI MUM UNI T	UNDI STURB SHEAR	REMOLDED SHEAR	BLOW	UNIT SKIN	UNIT END
FRI CTI ON	BEARI NG	STRENGTH	STRENGTH	COUNT	FRI CTI ON	BEARI NG
KSF	KSF	KSF	KSF		KSF	KSF
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0. 00	0.00	0. 00
0. 14E+02	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 14E+02	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 40E+02	0. 10E+08*	0.00	0. 00	0.00	0.00	0. 00
0. 40E+02	0. 10E+08*	0.00	0. 00	0.00	0.00	0. 00
0. 60E+02	0. 10E+08*	0.00	0. 00	0.00	0.00	0.00
0. 60E+02	0. 10E+08*	0. 00	0. 00	0.00	0. 00	0. 00

^{*} MAXIMUM UNIT FRICTION AND/OR MAXIMUM UNIT BEARING WERE SET TO BE 0.10E+08 BECAUSE THE USER DOES NOT PLAN TO LIMIT THE COMPUTED DATA.

	LRFD FACTOR ON UNIT	LRFD FACTOR
		· · · · · · ·
DEPTH	FRI CTI ON	BEARI NG
FT.		
0.00	0. 450	0. 450
5. 50	0. 450	0. 450
5. 50	0. 450	0. 450
20.00	0. 450	0. 450
20.00	0. 450	0. 450
24.00	0. 450	0. 450
24.00	1. 000	1. 000
33.00	1. 000	1. 000
33.00	1. 000	1. 000
50.00	1. 000	1. 000
		-

1

PENETRATION FT. KI P 0. 00 0. 0 1. 00 0. 1 2. 00 0. 2 3. 00 0. 5 4. 00 1. 0 5. 00 1. 5 6. 00 2. 2 7. 00 3. 5 8. 00 5. 8 9. 00 11. 1 11. 00 14. 2 12. 00 17. 7 13. 00 21. 4 14. 00 25. 5 15. 00 29. 8 16. 00 34. 5 17. 00 39. 4 18. 00 44. 7 19. 00 50. 3 20. 00 56. 2 21. 00 44. 7 19. 00 50. 3 20. 00 56. 2 21. 00 64. 4 22. 00 75. 1 23. 00 86. 4 24. 00 112. 7 25. 00 140. 7 26. 00 170. 7 27. 00 202. 0 28. 00 234. 7	KI P 0. 5 1. 0 1. 8 2. 8 5. 0 10. 7 17. 0 24. 0 31. 8 37. 3 41. 6 45. 9 50. 1 54. 4 58. 7 62. 9 67. 2 71. 5 82. 9 110. 6 139. 6 139. 6 139. 6 170. 0 210. 6 257. 6 662. 8 749. 7 831. 7 864. 7 870. 1 Page 3	KIP 0.5 1.1 2.0 3.3 6.0 12.2 19.1 27.6 37.6 45.6 52.7 60.1 67.8 75.8 84.2 92.8 101.7 110.9 127.6 160.9 195.8 234.4 285.4 285.4 106.7 1104.8
---	--	---

	9815, Borin	ng BB-1- Rev1	-19. ap7o
29.00	268. 7	870. 4	1139. 1
30.00	304. 1	870. 4	1174. 5
31.00	340.8	884. 9	1225. 7
32.00	378. 9	930. 9	1309.8
33.00	418. 3	976. 9	1395. 2
34.00	460. 2	1022. 9	1483. 2
35.00	504. 8	1068. 9	1573. 7
36.00	550. 9	1083. 5	1634. 3
37.00	598. 5	1083. 5	1682. 0
38.00	647.7	1083.5	1731. 1
39.00	698. 3	1083.5	1781.8

NOTES:

- AN ASTERISK IS PLACED IN THE END-BEARING COLUMN
IF THE TIP RESISTANCE IS CONTROLLED BY THE FRICTION
OF SOIL PLUG INSIDE AN OPEN-ENDED PIPE PILE.

* COMPUTE LOAD-DISTRIBUTION AND LOAD-SETTLEMENT *

T-Z CURVE NO.	NO. OF POINTS	DEPTH TO CURVE FT.	LOAD TRANSFER PSI	PILE MOVEMENT IN.
1	10	0. 0000E+00	0. 0000E+00 0. 5723E-01 0. 1145E+00 0. 2289E+00 0. 3434E+00 0. 4579E+00 0. 5151E+00 0. 5723E+00 0. 5723E+00 0. 5723E+00	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
2	10	0. 2775E+01	0. 0000E+00 0. 1145E+00 0. 2289E+00 0. 4579E+00 0. 6868E+00 0. 9157E+00 0. 1030E+01 0. 1145E+01 0. 1145E+01 0. 1145E+01	0. 0000E+01 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
3	10	0. 5458E+01	0. 0000E+00 0. 3262E+00 0. 6525E+00 0. 1305E+01 0. 1957E+01 0. 2610E+01 0. 2936E+01 0. 3262E+01 0. 3262E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
4	10	0. 5500E+01 Page 4	ı	

_		15, Boring BB-1-	Rev1-19. ap7o 0. 0000E+00 0. 3262E+00 0. 6525E+00 0. 1305E+01 0. 1957E+01 0. 2610E+01 0. 2936E+01 0. 3262E+01 0. 3262E+01 0. 3262E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
5	10	0. 1278E+02 0. 1996E+02	0. 0000E+00 0. 1240E+01 0. 2479E+01 0. 4959E+01 0. 7438E+01 0. 9918E+01 0. 1116E+02 0. 1240E+02 0. 1240E+02 0. 1240E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
			0. 0000E+00 0. 2248E+01 0. 4496E+01 0. 8991E+01 0. 1349E+02 0. 1798E+02 0. 2023E+02 0. 2248E+02 0. 2248E+02 0. 2248E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+01
7	10	0. 2000E+02	0. 0000E+00 0. 3019E+01 0. 6038E+01 0. 1208E+02 0. 1811E+02 0. 2415E+02 0. 2717E+02 0. 3019E+02 0. 3019E+02 0. 3019E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
8	10	0. 2203E+02	0. 0000E+00 0. 3673E+01 0. 7347E+01 0. 1469E+02 0. 2204E+02 0. 2939E+02 0. 3306E+02 0. 3673E+02 0. 3673E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
9	10	0. 2396E+02	0. 3673E+02 0. 0000E+00 0. 3890E+01 0. 7780E+01 0. 1556E+02 0. 2334E+02 0. 3112E+02 0. 3501E+02 0. 3890E+02	0. 2000E+01 0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00

Page 5

		9815,	Bori ng	BB-1-	Rev1-19. ap7o 0. 3890E+02	0. 5000E+00
10	10	0	2400E+0	12	0. 3890E+02	0. 2000E+01
	10	U.	24002+0	72	0. 0000E+00 0. 4155E+01 0. 8310E+01 0. 1662E+02 0. 2493E+02 0. 3324E+02 0. 3739E+02 0. 4155E+02 0. 4155E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
11	10	0.	2853E+0)2	0. 4155E+02	0. 2000E+01
					0. 0000E+00 0. 4968E+01 0. 9936E+01 0. 1987E+02 0. 2981E+02 0. 3975E+02 0. 4471E+02 0. 4968E+02 0. 4968E+02 0. 4968E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+01
12	10	0.	3296E+0)2	0. 0000E+00	0. 0000E+00
					0. 5827E+01 0. 1165E+02 0. 2331E+02 0. 3496E+02 0. 4662E+02 0. 5244E+02 0. 5827E+02 0. 5827E+02 0. 5827E+02	0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
13	10	0.	3300E+0	02	0. 0000E+00 0. 6195E+01 0. 1239E+02 0. 2478E+02 0. 3717E+02 0. 4956E+02 0. 5576E+02 0. 6195E+02 0. 6195E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
14	10	0.	4153E+0	02	0. 6195E+02 0. 0000E+00 0. 7258E+01 0. 1452E+02 0. 2903E+02 0. 4355E+02 0. 5806E+02 0. 6532E+02 0. 7258E+02	0. 2000E+01 0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 9000E-01 0. 1000E+00
15	10	0.	4996E+C)2 Page 6	0. 7258E+02 0. 0000E+00 0. 7258E+01 0. 1452E+02 0. 2903E+02 0. 4355E+02	0. 2000E+01 0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01

Page 6

TIP LOAD	TIP MOVEMENT
KIP	IN.
0. 0000E+00	0. 0000E+00
0. 6772E+02	0. 9261E-02
0. 1354E+03	0. 1852E-01
0. 2709E+03	0. 3704E-01
0. 5417E+03	0. 2408E+00
0. 8126E+03	0. 7779E+00
0. 9751E+03	0. 1352E+01
0. 1083E+04	0. 1852E+01
0. 1083E+04	0. 2778E+01
0. 1083E+04	0. 3704E+01

LOAD VERSUS SETTLEMENT CURVE

TOP LOAD KIP	TOP MOVEMENT IN.	TIP LOAD KIP	TIP MOVEMENT IN.
0. 2916E+01	0. 1779E-02	0. 7312E+00	0. 1000E-03
0. 3015E+02	0. 1828E-01	0. 7312E+01	0. 1000E-02
0. 1534E+03	0. 9295E-01	0. 3656E+02	0. 5000E-02
0. 3068E+03	0. 1859E+00	0. 7312E+02	0. 1000E-01
0. 1009E+04	0. 6696E+00	0. 2881E+03	0. 5000E-01
0. 1198E+04	0. 8513E+00	0. 3546E+03	0. 1000E+00
0. 1516E+04	0. 1481E+01	0. 6724E+03	0.5000E+00
0. 1719E+04	0. 2127E+01	0. 8754E+03	0. 1000E+01
0. 1927E+04	0. 3277E+01	0. 1083E+04	0. 2000E+01

9815, Boring WB1-2wDD. ap7o APILE for Windows, Version 2015.7.4 Serial Number: 166870365 A Program for Analyzing the Axial Capacity and Short-term Settlement of Driven Piles under Axial Loading. (c) Copyright ENSOFT, Inc., 1987-2015 All Rights Reserved ______ This program is licensed to: ECS Southeast, LLC. Marietta, GA Path to file locations : I:\GEOTECH\REPORTS\9751-10000\9815 Old Highway 41 Bridge over CSX RR\APILE\ Name of input data file : 9815, Boring WB1-2wDD.ap7d Name of output file : 9815, Boring WB1-2wDD.ap7o Name of plot output file : 9815, Boring WB1-2wDD.ap7p Time and Date of Analysis Date: January 11, 2019 Time: 10:36:57 1 * INPUT INFORMATION * Old Highway 41 Bridge Replacement Boring WB1-2 (Bent 1) DESI GNER : Robert Barnes JOB NUMBER: Cobb DOT Project No.: X2116 METHOD FOR UNIT LOAD TRANSFERS: - FHWA (Federal Highway Administration) Unfactored Unit Side Friction and Unit Side Resistance are used. COMPUTATION METHOD(S) FOR PILE CAPACITY: - FHWA (Federal Highway Administration) TYPE OF LOADING:

COMPRESSION

9815, Boring WB1-2wDD. ap7o

PILE TYPE:

H-Pile/Steel Pile

DATA FOR AXIAL STIFFNESS:

- MODULUS OF ELASTICITY = 0.290E+08 PSI - CROSS SECTION AREA = 34.40 IN2

NONCIRCULAR PILE PROPERTIES:

- TOTAL PILE LENGTH, TL = 60.00 FT.
- PILE STICKUP LENGTH, PSL = 20.50 FT.
- ZERO FRICTION LENGTH, ZFL = 0.00 FT.
- PERIMETER OF PILE = 58.19 IN.
- TIP AREA OF PILE = 211.52 IN2
- INCREMENT OF PILE LENGTH USED IN COMPUTATION = 1.00 FT.

SOIL INFORMATIONS:

DEPTH	SOI L TYPE	LATERAL EARTH PRESSURE	EFFECTIVE UNIT WEIGHT	FRICTION ANGLE DEGREES	BEARI NG CAPACI TY FACTOR
FT.		TRESSORE	LB/CF	DEGREES	17101011
0.00	SAND	0.00	115.00	28. 00	0.00
5. 00	SAND	0. 00	115. 00	28. 00	0. 00
5. 00	SAND	0.00	110. 00	26. 00	0. 00
12. 00	SAND	0. 00	110. 00	26. 00	0. 00
12. 00	SAND	0.00	120. 00	32. 00	0. 00
17. 00	SAND	0. 00	120. 00	32. 00	0. 00
17. 00	SAND	0. 00	130. 00	40. 00	0. 00
22. 00	SAND	0. 00	130. 00	40. 00	0. 00
22. 00	SAND	0. 00	150. 00	45. 00	0. 00
50. 00	SAND	0.00	150. 00	45. 00	0.00

MAXI MUM	MAXI MUM	UNDI STURB	REMOLDED			
UNI T	UNI T	SHEAR	SHEAR	BLOW	UNIT SKIN	UNIT END
FRI CTI ON	BEARI NG	STRENGTH	STRENGTH	COUNT	FRI CTI ON	BEARI NG
KSF	KSF	KSF	KSF		KSF	KSF
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0. 00	0.00	0. 00
0. 10E+08*	0. 10E+08*	0.00	0.00	0. 00	0.00	0. 00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0 0 = . 0 0	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 20E+02	0. 10E+08*	0.00	0. 00	0.00	0.00	0. 00
0. 20E+02	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 60E+02	0. 10E+08*	0.00	0. 00	0.00	0.00	0.00
0. 60E+02	0. 10E+08*	0. 00	0.00	0. 00	0. 00	0.00

^{*} MAXIMUM UNIT FRICTION AND/OR MAXIMUM UNIT BEARING WERE SET TO BE 0.10E+08 BECAUSE THE USER DOES NOT PLAN TO LIMIT THE COMPUTED DATA.

DEPTH	LRFD FACTOR ON UNIT FRICTION	LRFD FACTOR ON UNIT BEARING
FT. 0. 00	0. 450	0. 450
5. 00	0. 450	0. 450
5.00	0. 450	0. 450
12.00	0. 450	0. 450
12. 00	0. 450	0. 450
17. 00	0. 450	0. 450
17. 00	0. 450	0. 450
22. 00	0. 450	0. 450
22.00	1. 000	1. 000
50.00	1. 000	1. 000

1

* FED. HWY. METHOD *

PILE PENETRATION FT. 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00	TOTAL SKIN FRICTION KIP 0.0 0.1 0.2 0.5 1.0 1.5 2.1 2.7 3.5 4.3 5.2 6.2 7.3 9.1 11.5 14.1 16.9 19.9 25.8 34.8 44.3 54.3 77.8 103.8 132.6 162.8 194.6 227.9 262.8	END BEARI NG KI P 0. 5 1. 0 1. 8 2. 7 3. 3 3. 8 4. 2 4. 6 5. 1 5. 7 7. 3 10. 9 14. 4 17. 7 20. 8 30. 9 61. 4 94. 0 128. 9 166. 0 204. 3 273. 6 757. 2 901. 3 1040. 6 1083. 5 1083. 5 1083. 5	ULTI MATE CAPACI TY KI P 0. 5 1. 1 2. 0 3. 2 4. 2 5. 3 6. 3 7. 3 8. 6 10. 0 12. 5 17. 1 21. 7 26. 7 32. 3 45. 1 78. 3 113. 9 154. 7 200. 8 248. 5 327. 9 835. 0 1005. 2 1173. 2 1246. 3 1278. 1 1311. 4 1346. 3
28. 00	262. 8	1083.5 Page 3	1346. 2

	9815,	Boring WB1-2wDD	. ap7o
29. 00	299. 1	Ĭ083. 5	1382. 6
30.00	337. 0	1083. 5	1420. 5
31. 00	376. 4	1083. 5	1459. 9
32.00	417. 4	1083. 5	1500.8
33.00	459. 9	1083. 5	1543. 3
34.00	503. 9	1083. 5	1587. 3
35.00	549. 4	1083. 5	1632. 9
36.00	596. 5	1083. 5	1679. 9
37. 00	645. 1	1083. 5	1728. 5
38.00	695. 2	1083. 5	1778. 6
39.00	746. 8	1083. 5	1830. 3

NOTES:

- AN ASTERISK IS PLACED IN THE END-BEARING COLUMN
IF THE TIP RESISTANCE IS CONTROLLED BY THE FRICTION
OF SOIL PLUG INSIDE AN OPEN-ENDED PIPE PILE.

T-Z CURVE NO.	NO. OF POINTS	DEPTH TO CURVE FT.	LOAD TRANSFER PSI	PILE MOVEMENT IN.
1	10	0. 0000E+00	0. 0000E+00 0. 5723E-01 0. 1145E+00 0. 2289E+00 0. 3434E+00 0. 4579E+00 0. 5151E+00 0. 5723E+00 0. 5723E+00 0. 5723E+00	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
2	10	0. 2525E+01 0. 4958E+01	0. 0000E+00 0. 1145E+00 0. 2289E+00 0. 4579E+00 0. 6868E+00 0. 9157E+00 0. 1030E+01 0. 1145E+01 0. 1145E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
4	10	0. 5000E+01	0. 0000E+00 0. 1803E+00 0. 3607E+00 0. 7214E+00 0. 1082E+01 0. 1443E+01 0. 1623E+01 0. 1803E+01 0. 1803E+01 0. 1803E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+01

Page 4

E	10	· ·	B1-2wDD. ap7o 0. 0000E+00 0. 1956E+00 0. 3912E+00 0. 7824E+00 0. 1174E+01 0. 1565E+01 0. 1760E+01 0. 1956E+01 0. 1956E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
5	10	0. 8525E+01 0. 1196E+02	0. 0000E+00 0. 2774E+00 0. 5548E+00 0. 1110E+01 0. 1664E+01 0. 2219E+01 0. 2496E+01 0. 2774E+01 0. 2774E+01 0. 2774E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
6			0. 0000E+00 0. 4537E+00 0. 9075E+00 0. 1815E+01 0. 2722E+01 0. 3630E+01 0. 4084E+01 0. 4537E+01 0. 4537E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+01
7	10	0. 1200E+02	0. 0000E+00 0. 6638E+00 0. 1328E+01 0. 2655E+01 0. 3983E+01 0. 5310E+01 0. 5974E+01 0. 6638E+01 0. 6638E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
8	10	0. 1453E+02	0. 0000E+00 0. 8639E+00 0. 1728E+01 0. 3456E+01 0. 5183E+01 0. 6911E+01 0. 7775E+01 0. 8639E+01 0. 8639E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
9	10	0. 1696E+02 Page	0. 8639E+01 0. 0000E+00 0. 1414E+01 0. 2829E+01 0. 5657E+01 0. 8486E+01 0. 1131E+02 0. 1273E+02 0. 1414E+02	0. 2000E+01 0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00

		9815, Boring WB1		0 50005 00
10	10	0.17005.02	0. 1414E+02 0. 1414E+02	0. 5000E+00 0. 2000E+01
10	10	0. 1700E+02	0. 0000E+00 0. 2361E+01 0. 4722E+01 0. 9444E+01 0. 1417E+02 0. 1889E+02 0. 2125E+02 0. 2361E+02 0. 2361E+02 0. 2361E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
11	10	0. 1953E+02	0. 0000E+00 0. 3108E+01 0. 6216E+01 0. 1243E+02 0. 1865E+02 0. 2486E+02 0. 2797E+02 0. 3108E+02 0. 3108E+02 0. 3108E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
12	10	0. 2196E+02	0. 0000E+00	0. 0000E+00
13	10	0. 2200E+02	0. 3548E+01 0. 7097E+01 0. 1419E+02 0. 2129E+02 0. 2839E+02 0. 3193E+02 0. 3548E+02 0. 3548E+02 0. 3548E+02	0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 2000E+01
13	10	U. 2200E+02	0. 0000E+00 0. 3922E+01 0. 7843E+01 0. 1569E+02 0. 2353E+02 0. 3137E+02 0. 3529E+02 0. 3922E+02 0. 3922E+02 0. 3922E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
14	10	0. 3603E+02	0. 0000E+00 0. 7068E+01 0. 1414E+02 0. 2827E+02 0. 4241E+02 0. 5654E+02 0. 6361E+02 0. 7068E+02 0. 7068E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
15	10	0. 4996E+02	0. 0000E+00 0. 7396E+01 0. 1479E+02 0. 2958E+02 0. 4438E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01

Page 6

9815, Bori ng WB1-2wDD. ap7o 0. 5917E+02 0. 8000E-01 0. 6657E+02 0. 9000E-01 0. 7396E+02 0. 1000E+00 0. 7396E+02 0. 2000E+01

TIP LOAD	TIP MOVEMENT
KIP	IN.
0. 0000E+00	0. 0000E+00
0. 6772E+02	0. 9261E-02
0. 1354E+03	0. 1852E-01
0. 2709E+03	0. 3704E-01
0. 5417E+03	0. 2408E+00
0. 8126E+03	0. 7779E+00
0. 9751E+03	0. 1352E+01
0. 1083E+04	0. 1852E+01
0. 1083E+04	0. 2778E+01
0. 1083E+04	0. 3704E+01

LOAD VERSUS SETTLEMENT CURVE

TOP LOAD KIP	TOP MOVEMENT	TIP LOAD KIP	TIP MOVEMENT
0. 2869E+01	0. 1792E-02	0. 7312E+00	0. 1000E-03
0. 2978E+02	0. 1848E-01	0. 7312E+01	0. 1000E-02
0. 1511E+03	0. 9375E-01	0. 3656E+02	0.5000E-02
0. 3021E+03	0. 1875E+00	0. 7312E+02	0. 1000E-01
0. 1028E+04	0. 6877E+00	0. 2881E+03	0. 5000E-01
0. 1223E+04	0. 8735E+00	0. 3546E+03	0. 1000E+00
0. 1541E+04	0. 1503E+01	0. 6724E+03	0. 5000E+00
0. 1744E+04	0. 2149E+01	0. 8754E+03	0. 1000E+01
0. 1952E+04	0. 3300E+01	0. 1083E+04	0. 2000E+01

9815, Boring BB-2-Rev1-19. ap7o APILE for Windows, Version 2015.7.4 Serial Number: 166870365 A Program for Analyzing the Axial Capacity and Short-term Settlement of Driven Piles under Axial Loading. (c) Copyright ENSOFT, Inc., 1987-2015 All Rights Reserved ______ This program is licensed to: ECS Southeast, LLC. Marietta, GA Path to file locations : I:\GEOTECH\REPORTS\9751-10000\9815 Old Highway 41 Bridge over CSX RR\APILE\ Name of input data file : 9815, Boring BB-2-Rev1-19.ap7d Name of output file : 9815, Boring BB-2-Rev1-19.ap7o Name of plot output file : 9815, Boring BB-2-Rev1-19.ap7p Time and Date of Analysis Date: January 10, 2019 Time: 11:07:14 1 * INPUT INFORMATION * Old Highway 41 Bridge Replacement Boring BB-2 (Bent 2) DESI GNER : Robert Barnes JOB NUMBER: Cobb DOT Project No.: X2116 METHOD FOR UNIT LOAD TRANSFERS: - FHWA (Federal Highway Administration) Unfactored Unit Side Friction and Unit Side Resistance are used. COMPUTATION METHOD(S) FOR PILE CAPACITY: - FHWA (Federal Highway Administration) TYPE OF LOADING: COMPRESSION

9815, Boring BB-2-Rev1-19. ap7o

PILE TYPE:

H-Pile/Steel Pile

DATA FOR AXIAL STIFFNESS:

- MODULUS OF ELASTICITY = 0.290E+08 PSI - CROSS SECTION AREA = 34.40 IN2

NONCIRCULAR PILE PROPERTIES:

- TOTAL PILE LENGTH, TL = 45.00 FT.
- PILE STICKUP LENGTH, PSL = 16.00 FT.
- ZERO FRICTION LENGTH, ZFL = 0.00 FT.
- PERIMETER OF PILE = 58.19 IN.
- TIP AREA OF PILE = 211.52 IN2
- INCREMENT OF PILE LENGTH USED IN COMPUTATION = 1.00 FT.

SOIL INFORMATIONS:

DEDTU	SOI L	LATERAL EARTH	EFFECTI VE UNI T	FRI CTI ON ANGLE	BEARING CAPACITY
DEPTH FT.	TYPE	PRESSURE	WEI GHT LB/CF	DEGREES	FACTOR
0.00	SAND	0.00	115. 00	28. 00	0.00
3. 00	SAND	0.00	115. 00	28. 00	0.00
3.00	SAND	0.00	120.00	36.00	0.00
8. 00	SAND	0.00	120. 00	36. 00	0. 00
8. 00	SAND	0.00	130.00	40.00	0.00
10.00	SAND	0.00	130.00	40.00	0.00
10.00	SAND	0.00	140.00	42.00	0.00
25.00	SAND	0.00	140.00	42.00	0.00
25.00	SAND	0.00	150.00	45.00	0.00
40.00	SAND	0.00	150. 00	45. 00	0.00

MAXIMUM	MAXIMUM	UNDI STURB	REMOLDED	DI OW	LINET CKIN	LINET END
UNI T	UNI T	SHEAR	SHEAR	BLOW	UNIT SKIN	UNIT END
FRI CTI ON	BEARI NG	STRENGTH	STRENGTH	COUNT	FRI CTI ON	BEARI NG
KSF	KSF	KSF	KSF		KSF	KSF
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0. 00	0.00	0.00	0. 00
0 0 = . 0 0	0. 10E+08*	0.00	0. 00	0.00	0.00	0. 00
0. 10E+08*	0. 10E+08*	0.00	0. 00	0.00	0.00	0.00
	0. 10E+08*	0.00	0. 00	0.00	0.00	0. 00
0. 10E+08*	0. 10E+08*	0.00	0. 00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0. 00	0.00	0.00	0. 00	0. 00

^{*} MAXIMUM UNIT FRICTION AND/OR MAXIMUM UNIT BEARING WERE SET TO BE 0.10E+08 BECAUSE THE USER DOES NOT PLAN TO LIMIT THE COMPUTED DATA.

	LRFD FACTOR ON UNIT	LRFD FACTOR
	J J	· · · · · · · · · · · · · · · · · · ·
DEPTH	FRI CTI ON	BEARI NG
FT.		
0.00	0. 450	0. 450
3.00	0. 450	0. 450
3.00	0. 450	0. 450
8. 00	0. 450	0. 450
8. 00	0. 450	0. 450
10.00	0. 450	0. 450
10.00	1. 000	1. 000
25.00	1. 000	1. 000
25.00	1. 000	1. 000
40.00	1. 000	1. 000

1

* FED. HWY. METHOD * *********

NOTES:

- AN ASTERISK IS PLACED IN THE END-BEARING COLUMN
IF THE TIP RESISTANCE IS CONTROLLED BY THE FRICTION
OF SOIL PLUG INSIDE AN OPEN-ENDED PIPE PILE.

T-Z CURVE NO.	NO. OF POINTS	DEPTH TO CURVE FT.	LOAD TRANSFER PSI	PILE MOVEMENT IN.
1	10	0. 0000E+00	0. 0000E+00 0. 5723E-01 0. 1145E+00 0. 2289E+00 0. 3434E+00 0. 4579E+00 0. 5151E+00 0. 5723E+00 0. 5723E+00 0. 5723E+00	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
2	10	0. 1525E+01	0. 0000E+00 0. 7631E-01 0. 1526E+00 0. 3052E+00 0. 4579E+00 0. 6105E+00 0. 6868E+00 0. 7631E+00 0. 7631E+00	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
3	10	0. 2958E+01	0. 0000E+00 0. 1705E+00 0. 3410E+00 0. 6820E+00 0. 1023E+01 0. 1364E+01 0. 1535E+01 0. 1705E+01 0. 1705E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
4	10	0. 3000E+01	0. 0000E+00 0. 3355E+00 0. 6710E+00 0. 1342E+01 0. 2013E+01 0. 2684E+01 0. 3020E+01 0. 3355E+01 0. 3355E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01

5	10	9815, Bori ng BB-2 0. 5525E+01	-Rev1-19. ap7o	
6	10	0. 3323E+01 0. 7958E+01	0. 0000E+00 0. 5713E+00 0. 1143E+01 0. 2285E+01 0. 3428E+01 0. 4570E+01 0. 5141E+01 0. 5713E+01 0. 5713E+01 0. 5713E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
7	10	0. 7938E+01	0. 0000E+00 0. 9077E+00 0. 1815E+01 0. 3631E+01 0. 5446E+01 0. 7261E+01 0. 8169E+01 0. 9077E+01 0. 9077E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
8	10	0. 8000E+01 0. 9025E+01	0. 0000E+00 0. 1308E+01 0. 2616E+01 0. 5231E+01 0. 7847E+01 0. 1046E+02 0. 1177E+02 0. 1308E+02 0. 1308E+02 0. 1308E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+01
			0. 0000E+00 0. 1625E+01 0. 3250E+01 0. 6500E+01 0. 9750E+01 0. 1300E+02 0. 1462E+02 0. 1625E+02 0. 1625E+02 0. 1625E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+01
9	10	0. 9958E+01	0.0000E+00 0.1625E+01 0.3250E+01 0.6500E+01 0.9750E+01 0.1300E+02 0.1462E+02 0.1625E+02 0.1625E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
10	10	0. 1000E+02	0. 0000E+00 0. 1845E+01 0. 3691E+01 0. 7382E+01 0. 1107E+02 0. 1476E+02 0. 1661E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01

Page 5

		9815, Boring BB-2	-Rev1-19. ap7o 0. 1845E+02 0. 1845E+02 0. 1845E+02	0. 1000E+00 0. 5000E+00 0. 2000E+01
11	10	0. 1753E+02	0. 0000E+00 0. 3218E+01 0. 6435E+01 0. 1287E+02 0. 1931E+02 0. 2574E+02 0. 2896E+02 0. 3218E+02 0. 3218E+02 0. 3218E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+01
12	10	0. 2496E+02	0. 0000E+00 0. 4642E+01 0. 9284E+01 0. 1857E+02 0. 2785E+02 0. 3714E+02 0. 4178E+02 0. 4642E+02 0. 4642E+02 0. 4642E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+01
13	10	0. 2500E+02	0. 0000E+00 0. 4978E+01 0. 9957E+01 0. 1991E+02 0. 2987E+02 0. 3983E+02 0. 4480E+02 0. 4978E+02 0. 4978E+02 0. 4978E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
14	10	0. 3253E+02	0. 0000E+00 0. 5587E+01 0. 1117E+02 0. 2235E+02 0. 3352E+02 0. 4470E+02 0. 5029E+02 0. 5587E+02 0. 5587E+02 0. 5587E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
15	10	0. 3996E+02	0. 0000E+00 0. 5587E+01 0. 1117E+02 0. 2235E+02 0. 3352E+02 0. 4470E+02 0. 5029E+02 0. 5587E+02 0. 5587E+02 0. 5587E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01

TIP LOAD TIP MOVEMENT IN.

9815, Boring BB-2-Rev1-19.ap7o

0. 0000E+00	0. 0000E+00
0. 6772E+02	0. 9261E-02
0. 1354E+03	0. 1852E-01
0. 2709E+03	0. 3704E-01
0. 5417E+03	0. 2408E+00
0.8126E+03	0.7779E+00
0. 9751E+03	0. 1352E+01
0. 1083E+04	0. 1852E+01
0. 1083E+04	0. 2778E+01
0. 1083E+04	0. 3704E+01

LOAD VERSUS SETTLEMENT CURVE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
KIP	IN.	KIP	IN.
0. 1795E+01	0. 9195E-03	0. 7312E+00	0. 1000E-03
0. 1826E+02	0. 9306E-02	0. 7312E+01	0. 1000E-02
0. 9292E+02	0. 4725E-01	0. 3656E+02	0. 5000E-02
0. 1858E+03	0. 9450E-01	0. 7312E+02	0. 1000E-01
0. 7199E+03	0. 3862E+00	0. 2881E+03	0. 5000E-01
0.8821E+03	0. 5200E+00	0. 3546E+03	0. 1000E+00
0. 1200E+04	0. 1092E+01	0. 6724E+03	0.5000E+00
0. 1403E+04	0. 1702E+01	0. 8754E+03	0. 1000E+01
0. 1611E+04	0. 2815E+01	0. 1083E+04	0. 2000E+01

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
6.0	62.0	4.8	57.1	6.4	17.267	-5.819	5.53	19.0
12.0	73.1	15.9	57.1	8.0	18.231	-5.516	5.80	18.4
18.0	91.3	34.2	57.1	11.0	19.673	-4.789	6.20	17.7
19.5	97.0	39.8	57.1	11.9	19.996	-4.505	6.30	17.5
20.0	99.0	41.8	57.1	12.2	20.090	-4.412	6.34	17.4
20.2	159.4	42.2	117.2	23.0	22.488	-1.009	7.16	16.5
21.0	161.1	43.8	117.2	23.4	22.518	-0.963	7.18	16.4
21.5	162.1	44.9	117.2	23.6	22.547	-0.929	7.19	16.4
22.0	163.1	45.9	117.2	23.8	22.576	-0.906	7.20	16.3
22.5	164.2	47.0	117.2	24.0	22.594	-0.882	7.22	16.3
23.0	165.3	48.1	117.2	24.3	22.618	-0.855	7.23	16.3
23.5	166.4	49.1	117.2	24.5	22.652	-0.824	7.24	16.3
24.0	167.5	50.2	117.2	24.8	22.659	-0.785	7.26	16.2
24.5	699.0	52.7	646.3	230.0	36.236	-1.830	9.76	19.0
25.0	686.8	55.2	631.6	223.1	35.847	-1.628	9.69	18.8

Total Continuous Driving lime 10.00 minutes; Total Number of Blows 414

40 L

0

40 <mark>–</mark> 0

Blow Count (blows/ft)

Tension (ksi)

Stroke (ft)

ECS SOUTHEAST, LLP Old Highway 41 Bridge Repcelelt BB-2

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
6.0	44.5	4.9	39.6	4.3	15.458	-5.718	5.09	20.5
8.0	82.2	8.3	73.9	9.2	18.474	-4.433	5.91	18.2
8.5	82.9	9.0	73.9	9.3	18.530	-4.404	5.92	18.2
9.0	83.6	9.7	73.9	9.4	18.585	-4.390	5.94	18.1
9.5	84.3	10.4	73.9	9.5	18.621	-4.352	5.95	18.1
10.0	85.1	11.2	73.9	9.6	18.702	-4.328	5.97	18.1
10.5	639.1	13.6	625.5	168.0	38.918	-2.068	9.82	19.0
11.0	642.8	16.1	626.7	170.4	38.935	-2.102	9.83	19.1
11.5	646.5	18.6	627.9	173.1	38.907	-2.278	9.83	19.1
12.0	650.3	21.2	629.1	175.1	38.994	-2.422	9.85	19.1
12.5	654.2	23.8	630.4	177.7	38.989	-2.508	9.85	19.1
13.0	658.0	26.4	631.6	180.4	39.058	-2.571	9.86	19.1
13.5	661.9	29.1	632.8	183.2	38.876	-2.635	9.87	19.1
14.0	665.9	31.9	634.0	185.9	38.753	-2.730	9.88	19.2
14.5	669.9	34.6	635.3	189.3	38.677	-2.875	9.89	19.1
15.0	673.9	37.4	636.5	192.5	38.436	-2.912	9.89	19.2
15.5	678.0	40.3	637.7	195.6	38.347	-2.980	9.90	19.2
16.0	682.1	43.2	638.9	199.0	38.223	-3.036	9.91	19.2
16.5	686.3	46.1	640.2	207.0	37.796	-3.039	9.81	19.0
17.0	690.5	49.1	641.4	211.5	37.577	-3.072	9.81	18.9
17.5	694.7	52.1	642.6	215.6	37.400	-3.102	9.82	19.0
18.0	699.0	55.1	643.8	219.7	37.193	-3.124	9.84	19.0
18.5	703.3	58.2	645.1	224.1	37.014	-3.121	9.85	19.0
19.0	707.6	61.4	646.3	228.4	36.850	-3.109	9.86	19.0
19.5	712.0	64.5	647.5	233.4	36.663	-3.115	9.87	19.0
20.0	716.5	67.7	648.7	238.9	36.472	-3.144	9.87	19.0

Total Continuous Driving lime 52.00 minutes; Total Number of Blows 1973