QSFP-40GB-PSM4-BXD-40-C-OPC Cisco® Compatible TAA 40GBase-BX QSFP+ Transceiver (SMF, 1330nmTx/1270nmRx, 40km, MPO, DOM) #### **Features** - Compliant with IEEE802.3cp 10GBASE-BR40-D - Compliant with QSFP+ MSA - Compliant with SFF-8636 - Single-mode fiber - 8-degree, angled MPO12 single-mode fiber connector - Commercial Temperature 0 to 70 Celsius - Hot Pluggable - Excellent ESD Protection - Metal with lower EMI - RoHS compliant and lead-free # **Applications:** - 40GBase-BX Ethernet - Access, Metro and Enterprise ### **Product Description** This Cisco® compatible QSFP+ transceiver provides 40GBase-BX throughput up to 40km over single-mode fiber (SMF) using a wavelength of 1330nmTx/1270nmRx via an MPO connector. It can operate at temperatures between 0 and 70C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Cisco®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty. OptioConnect's transceivers are RoHS compliant and lead-free. # **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Note | |--------------------------------------|--------|-------|---------|-------|------|------| | Supply Voltage | Vcc | 3.135 | | 3.465 | V | | | Storage Temperature | Tstg | -40 | | 85 | °C | | | Case Operating Temperature | Тс | 0 | | 70 | °C | | | Aggregated Data Rate Per Transceiver | DR | | 41.24 | | Gbps | 1 | | Bit Rate (NRZ) | DR | | 10.3125 | | Gbps | 2 | | Supported Link Length | Lmax1 | | | 40 | km | 3 | ## Notes: - 1. All channels. - 2. Per optical transceiver block. - 3. Single-mode fiber per G.652. - 4. Distances up to 40km are conditional to the loss budget of the link. Not to exceed 18dB (including fiber loss, connector, TDP, and so forth), as per IEEE 802.3 CP specifications. ### **Electrical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Note | |-----------------------------------|---------|------|---------|-------|------|---------| | Supply Voltage | Vcc | 3.15 | | 3.465 | V | | | Symbol Rate Per Lane | BR | | 10.3125 | | Gbps | ±100ppm | | Input Voltage - Low | VIL | -0.3 | | 0.8 | V | | | Input Voltage - High | VIH | 2 | | 3. | V | | | Output Voltage - Low | VOL | -0.3 | | 0.8 | V | | | Output Voltage - High | VOH | 2 | | 3. | V | | | Differential Data Input Per Lane | VIN,pp | 70 | | 900 | mV | | | Differential Data Output Per Lane | VOUT,pp | 100 | | 900 | mV | 1 | ## Notes 1. Internally AC coupled but requires an external 100Ω differential load termination. # **Optical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Note | | |---|------------------|-------|------------------------------------|------|------|----------|--| | Transmitter | | | | | | | | | Launch Optical Power | Pavg | -3 | | +3 | dBm | Per Lane | | | | Pavg | | | -30 | dBm | 1 | | | Lane Center Tx WL for Each of the Four Channels | λ | 1320 | 1330 | 1340 | nm | 2 | | | Extinction Ratio | ER | 5.5 | | | dB | | | | OMA-TDP | OMA-TDP | -1 | | | dBm | | | | Transmitter Dispersion Penalty | TDP | | | 2.6 | dB | | | | Side-Mode Suppression Ratio | SMSR | 30 | | | dB | | | | Optical Return Loss Tolerance | ORLT | | | 21 | dB | | | | Transmitter Reflectance | | | | -12 | dB | | | | Eye Mask Margin | | 10 | | | % | | | | Eye Mask:
(X1, X2, X3, Y1, Y2, Y3) | Mask | (0.25 | (0.25, 0.4, 0.45, 0.25, 0.28, 0.4) | | | 3 | | | Receiver | | | | | | | | | Lane Center Rx WL for Each of the Four Channels | λ | 1260 | 1270 | 1280 | nm | 2 | | | Unstressed Receiver Sensitivity (OMA) | RX-OMA | +2.5 | | -19 | dBm | Per Lane | | | Stressed Receiver Sensitivity (OMA) | RX-Stress
OMA | | | 16.8 | dBm | Per Lane | | | Average Receiver Power Per Lane | RXsense | -21.2 | | -7 | dBm | | | | Damage Threshold | THd | -3 | | | dBm | 4 | | | Reflectance | | | | -26 | dB | Per Lane | | | LOS De-Assert | LOSD | | | -22 | dBm | | | | LOS Assert | LOSA | -35 | | | dBm | 5 | | | LOS Hysteresis | | 0.5 | | 4 | dB | | | # Note: - 1. Per lane in "off" mode. - 2. Built-in optical BiDi demux for Tx/Rx for each channel. - 3. Hit ratio of 1x10⁻¹², per IEEE. - 4. Continuous exposure without damage. - 5. Rx_LOS is asserted if any of the network optical lanes have LOS. # **Pin Descriptions** | Pin | Logic | Symbol | Name/Description | Note | |-----|------------|---------|--|------| | 1 | | GND | Module Ground. | 1 | | 2 | CML-I | Tx2- | Transmitter Inverted Data Input. | | | 3 | CML-I | Tx2+ | Transmitter Non-Inverted Data Input. | | | 4 | | GND | Module Ground. | 1 | | 5 | CML-I | Tx4- | Transmitter Inverted Data Input. | | | 6 | CML-I | Tx4+ | Transmitter Non-Inverted Data Input. | | | 7 | | GND | Module Ground. | 1 | | 8 | LVTTL-I | ModSelL | Module Select. | 2 | | 9 | LVTTL-I | ResetL | Module Reset. | 2 | | 10 | | VccRx | +3.3V Receiver Power Supply. | | | 11 | LVCMOS-I | SCL | 2-Wire Serial Interface Clock. | 2 | | 12 | LVCMOS-I/O | SDA | 2-Wire Serial Interface Data. | 2 | | 13 | | GND | Module Ground. | 1 | | 14 | CML-O | Rx3+ | Receiver Non-Inverted Data Output. | | | 15 | CML-O | Rx3- | Receiver Inverted Data Output. | | | 16 | | GND | Module Ground. | 1 | | 17 | CML-O | Rx1+ | Receiver Non-Inverted Data Output. | | | 18 | CML-O | Rx1- | Receiver Inverted Data Output. | | | 19 | | GND | Module Ground. | 1 | | 20 | | GND | Module Ground. | 1 | | 21 | CML-O | Rx2- | Receiver Inverted Data Output. | | | 22 | CML-O | Rx2+ | Receiver Non-Inverted Data Output. | | | 23 | | GND | Module Ground. | 1 | | 24 | CML-O | Rx4- | Receiver Inverted Data Output. | 1 | | 25 | CML-O | Rx4+ | Receiver Non-Inverted Data Output. | | | 26 | | GND | Module Ground. | 1 | | 27 | LVTTL-O | ModPrsL | Module Present. Internally pulled down to the GND. | | | 28 | LVTTL-O | IntL | Interrupt Output. Should be pulled up on the host board. | 2 | | 29 | | VccTx | +3.3V Transmitter Power Supply. | | | 30 | | Vcc1 | +3.3V Power Supply. | | | 31 | LVTTL-I | LPMode | Low-Power Mode. | 2 | | 32 | | GND | Module Ground. | 1 | | 33 | CML-I | Tx3+ | Transmitter Non-Inverted Data Input. | | | 34 | CML-I | Tx3- | Transmitter Inverted Data Input. | | | 35 | | GND | Module Ground. | 1 | | 36 | CML-I | Tx1+ | Transmitter Non-Inverted Data Input. | | | 37 | CML-I | Tx1- | Transmitter Inverted Data Input. | | | 38 | | GND | Module Ground. | 1 | # Notes: 1. The module signal grounds are isolated from the module case. **2.** This is an open collector/drain output that, on the host board, requires a $4.7k\Omega$ -10kΩ pull-up resistor to the Host_Vcc. ## **Electrical Pin-Out Details** # **Power Supply Filtering** # **Transceiver Block Diagram** # **Mechanical Specifications** Dimensions are in mm. # **MPO12 Connector – Front View** Fibers 1, 2, 11, and 12 are used. # **OptioConnect** ## Innovation for the Future of High-Speed Networking #### Who We Are OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures. ### What We Do At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with: - Superior Performance - Network and traffic optimization - Intelligent energy management - Seamless OEM compatibility - Scalable cost-efficiency ## **Smarter Networks by Design** Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform. ## **Our Team** Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions. ## **Our Mission** To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world. #### **Let's Connect** Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com