

SFP-10/16GB-SW-C-OPC

Cisco® Compatible TAA 10/16GBase-SR/SW FC SFP+ Transceiver Multi-Rate (MMF, 850nm, 100m, LC, DOM)

Features

- Up to 16Gbps Fiber Channel Serial Line Rate
- Up to 10Gbps Ethernet
- Duplex LC Connector
- 850nm VCSEL
- OM3
- AC/AC Coupling Interface
- Multi-Mode Fiber
- Commercial Temperature: 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead-Free

Applications:

- 10GBase-SR Ethernet
- Tri-Rate 4G/8G/16G Fibre Channel
- Datacenter and Enterprise

Product Description

This Cisco® compatible multi-rate SFP+ transceiver provides 10/16GBase-SR/SW Fibre Channel throughput up to 100m over multi-mode fiber (MMF) using a wavelength of 850nm via an LC connector. It can operate at temperatures between 0 and 70C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Cisco®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power Supply Voltage	Vcc	-0.5		4	V
Storage Temperature	Tstg	-40		85	°C
Operating Case Temperature	Тс	0	25	70	°C
Relative Humidity	RH	0		85	%

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	
Power Supply Voltage	Vcc	3.15	3.3	3.46	V	
Supply Current	Icc			300	mA	
Transmitter						
Input Differential Impedance	RIN		100		Ω	
Single-Ended Data Input Swing	VIN,pp	90		800	mV	
Transmit Disable Voltage	VD	2		Vcc	V	
Transmit Enable Voltage	VEN	Vee		Vee+0.8	V	
Receiver						
Single-Ended Data Output Swing	VOUT,pp	185		425	mV	
LOS Fault	VLOS _{fault}	2		Host_Vcc	V	
LOS Normal	VLOS _{norm}	Vee		Vee+0.8	V	
Power Supply Rejection	PSR	100			mVp-p	
Receiver Deterministic Jitter @14.025Gbps	DJ			0.22	UI	
Receiver Deterministic Jitter @8.5Gbps	DJ			0.42	UI	

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Data Rate	BR	4.25		14.025	Gbps		
Bit Error Rate	BER			10-12		1	
Transmitter							
Center Wavelength	λ	840		860	nm		
RMS Spectral Width	σ			0.6	nm		
Average Optical Power	Pavg	-8.4		2.4	dBm	2	
Optical Modulation Amplitude	OMA	-6.4		3	dBm		
Extinction Ratio	ER	2			dB		
Optical Return Loss Tolerance	ORLT			12	dB		
Receiver							
Center Wavelength	λ	840		860	nm		
Damage Threshold		3.4			dBm		
Receiver Power Overload		2.4			dBm		
Receiver Sensitivity	SENS			-10.3	dBm		
LOS Assert	LOSA	-30			dBm		
LOS De-Assert	LOSD			-13	dBm		
LOS Hysteresis	LOSH	0.5			dB		

Notes:

- 1. PRBS 2⁷-1 for 8GFC. PRBS 2³¹-1 for 16GFC.
- 2. Class 1 Laser Safety limits CDRH and EN60825 standards.

Pin Descriptions

Pin	Logic	Symbol	Name/Description	Notes
1		VeeT	Module Transmitter Ground.	1
2	LVTTL-O	Tx_Fault	Module Transmitter Fault.	2
3	LVTTL-I	Tx_Disable	Transmitter Disable. Turns off the transmitter laser output.	3
4	LVTTL-I/O	SDA	2-Wire Serial Interface Data.	
5	LVTTL-I	SCL	2-Wire Serial Interface Clock.	
6		MOD_ABS	Module Absent. Connected to the VeeT or VeeR in the module.	2
7	LVTTL-I	RS0	Rate Select 0. Optionally controls the SFP+ module receiver. When "high," the input signaling rate is >4.25GBd. When "low," the input signal rate is ≤4.25GBd.	
8	LVTTL-O	Rx_LOS	Receiver Loss of Signal Indication.	2
9	LVTTL-I	RS1	Rate Select 1. Optionally controls the SFP+ module transmitter. When "high," the input signaling rate is >4.25GBd. When "low," the input signal rate is ≤4.25GBd.	
10		VeeR	Module Receiver Ground.	1
11		VeeR	Module Receiver Ground.	1
12	CML-O	RD-	Receiver Inverted Data Output.	
13	CML-O	RD+	Receiver Data Output.	
14		VeeR	Module Receiver Ground.	1
15		VccR	3.3V Module Receiver Power Supply.	
16		VccT	3.3V Module Transmitter Power Supply.	
17		VeeT	Module Transmitter Ground.	1
18	CML-I	TD+	Transmitter Non-Inverted Data Input.	
19	CML-I	TD-	Transmitter Inverted Data Input.	
20		VeeT	Module Transmitter Ground.	1

Notes:

- 1. Module ground pins are isolated from the module case and chassis ground within the module.
- 2. Shall be pulled up with $4.7k\Omega$ to $10k\Omega$ to a voltage between 3.15V and 3.45V on the host board.
- 3. Shall be pulled up with $4.7k\Omega$ to $10k\Omega$ to the VccT in the module.

Electrical Pin-Out Details

Transceiver Block Diagram

Mechanical Specifications

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

