

SFP-10GB-DW-C-E-C-OPC

Cisco® Compatible TAA 10GBase-DWDM 100GHz SFP+ Transceiver (SMF, Tunable, 80km, LC, DOM, -20 to 85C)

Features

- Small Form Factor Pluggable WDM Optical Transceiver from 191.3 to 196.3THz with 100GHz Spacing
- Self-Tuning Function Enables Automatic Link-Up
- 10G Electrical Interface (SFF-8418)
- Up to 80km Over SMF (ITU-T G.652)
- Loss of Signal (LOS) Function
- Operating Data Rate: 9.83 to 10.31Gbps
- LC Connector Interface
- Single Voltage 3.3V Power Supply
- Hot-Pluggable Electrical Interface
- Operating Temperature: -20 to 85 Celsius, -40C Cold Start
- RoHS Compliant and Lead-Free

Applications:

• 10GBase Ethernet

Product Description

This Cisco® compatible SFP+ transceiver provides 10GBase-DWDM throughput up to 80km over single-mode fiber (SMF) using a tunable wavelength via an LC connector. It can operate at temperatures between -20 and 85C. It is guaranteed to be 100% compatible with the equivalent Cisco® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

ITU Channel Wavelength Guide

ITU Channel	Frequency (THz)	Center Wavelength (nm)	ITU Channel	Frequency (THz)	Center Wavelength (nm)
13	191.30	1567.13	39	193.90	1546.12
14	191.40	1566.31	40	194.00	1545.32
15	191.50	1565.50	41	194.10	1544.53
16	191.60	1564.68	42	194.20	1543.73
17	191.70	1563.86	43	194.30	1542.94
18	191.80	1563.05	44	194.40	1542.14
19	191.90	1562.23	45	194.50	1541.35
20	192.00	1561.42	46	194.60	1540.56
21	192.10	1560.61	47	194.70	1539.77
22	192.20	1559.79	48	194.80	1538.98
23	192.30	1558.98	49	194.90	1538.19
24	192.40	1558.17	50	195.00	1537.40
25	192.50	1557.36	51	195.10	1536.61
26	192.60	1556.56	52	195.20	1535.82
27	192.70	1555.75	53	195.30	1535.04
28	192.80	1554.94	54	195.40	1534.25
29	192.90	1554.13	55	195.50	1533.47
30	193.00	1553.33	56	195.60	1532.68
31	193.10	1552.52	57	195.70	1531.90
32	193.20	1551.72	58	195.80	1531.12
33	193.30	1550.92	59	195.90	1530.33
34	193.40	1550.12	60	196.00	1529.55
35	193.50	1549.32	61	196.10	1528.77
36	193.60	1548.52	62	196.20	1527.99
37	193.70	1547.72	63	196.30	1527.22
38	193.80	1546.92			

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Relative Humidity (Non-Condensing)		5		85	%	
Operating Case Temperature	Тс	-20		85	°C	1
Storage Temperature	Tstg	-40		85	°C	
Supply Voltage	V	-0.3		3.6		
Data Rate	Gbps	9.8304		10.3125		± 100ppm
Ambient Humidity (Non-Condensing)	%	5		85		
Modulation Type		8B/10B, 64B/66B (NRZ)			2	
Transmission Cable		SMF (ITU-T G.6520) 80km				

Notes:

- 1. Cold start temperature: -40°C.
- 2. 9.83, 10.31Gbps.

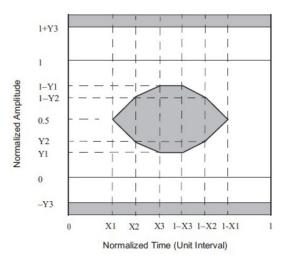
Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Voltage on LVTTL Input		-0.3		Vcc+0.3	V	
Tx Input Data Signal Levels (AC Coupled)				1.2	Vppd	
Static Discharge Voltage HBM Per JEDEC		-1000		1000	V	
JESD22-A224-B		-2000		2000		
Peak Optical Input Power				-6	dBm	
Power Supply Voltage		3.14	3.3	3.46	Vcc	
Power Consumption				2.5	W	
Low-Speed Electrical Interface						
Tx_Fault, Rx_LOS	VOL	-0.3		0.4	V	1
	ЮН	-50		37.5	uA	
Tx_Disable, RS0, RS1	VIL	-0.3		0.8	V	
	VIH	2.0		VccT+0.3	V	

Notes:

1. Positive values indicate current flowing into the module. At 0.7mA.

Optical Characteristics


Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Center Frequency Range	FR	191.3		196.3	THz	
Central Frequency Accuracy (EOL)		-12.5		12.5	GHz	
Frequency Spacing			100		GHz	
Side-Mode Suppression Ratio	SMSR	30			dB	
Spectral Width (-20dB)	Δλ			1	nm	
Average Optical Power	Pavg	-1		3	dBm	
Extinction Ratio	ER	8.2			dB	
Average Launch Power of Tx_Disable				-30	dBm	
Optical Return Loss Tolerance	ORL			20	dB	
Transmitter Reflectance	TR			-12	dB	
Transmitter Eye Mask		-	Transmitter Ey	ve Mask		1
Receiver						
Center Frequency Range	FR	191.3		196.3	THz	
Rx Sensitivity in Average	Pr_Avg			-24	dBm	2
				-21	dBm	3
Rx Overload in Average	OL	-7			dBm	2

Receiver Reflectance	RR		-27	dB	
LOS Assert Level	LOSA	-32		dBm	
LOS De-Assert Level	LOSD		-25	dB	
LOS Hysteresis	LOSH	0.5		dB	

Notes:

- 1. 9.8304Gbps to 10.3125Gbps, PRBS31 NRZ, 10GBase-LR mask and filter, at least 500 waveforms, and Hit Ratio meets the standard of $1E^{-12}$ under margin.
- 2. 10.3125Gbps, PRBS31 NRZ, ER>8.2dB, and BER=1E⁻¹², back-to-back.
- 3. 10.3125Gbps, PRBS31 NRZ, ER>8.2dB, BER=1E⁻¹², CD=1400ps/nm, and OSNR>35dB.

Transmitter Eye Mask

 $\{X1, X2, X3, Y1, Y2, Y3\} = \{0.25, 0.40, 0.45, 0.25, 0.28, 0.40\}$

Timing Specifications

Parameter	Symbol	Min.	Max.	Unit	Notes
Tarameter	3,111501		WIGA:	O.I.I.	110103
Tx_Disable Assert Time	T_off		100	us	1
Tx_Disable Negate Time	T_on		2	ms	2
Time to Initialize Cooled Module & Time to	T_start_up_cooled		90	S	3
Power-Up a Cooled Module to Power Level II					
Tx_Fault Assert for Cooled Module	Tx_fault_on_cooled		50	ms	4
Tx_Fault Reset	T_reset	10		us	5
RSO, RS1: Rate Select Timing for Low Input	T_RSO_L, T_RS1_L		N/A		6
RSO, RS1: Rate Select Timing for High Input	T_RSO_H, T_RS1_H		N/A		6
Rx_LOS Assert Delay	T_los_on		100		7
Rx_LOS Negate Delay	T_los_off		20		8
Wavelength Tuning Time	T_wave_change	3	10		9

Notes:

- 1. Rising edge of Tx_Disable to fall of output signal below 10% of normal.
- 2. Falling edge of Tx_Disable to rise of output signal above 90% of nominal. This only applies in normal operation, not during start-up or fault recovery.
- 3. From power on or hot plug, or Tx_Disable negated during power-up or Tx_Fault recovery, until cooled Power Level I part (or cooled Power Level II part during fault recovery) is fully operational. Also, from stop bit low-to-high SDA transition enabling Power Level II until cooled module is fully operational.
- 4. From occurrence of fault to assertion of Tx_Fault.
- 5. Time Tx_Disable must be held "high" to reset Tx_Fault.
- 6. From assertion until stable output.
- 7. From occurrence of loss of signal to assertion of Rx_LOS.
- 8. From occurrence of presence of signal to negation of Rx_LOS.
- 9. From writing of wavelength set command to completion of the wavelength tuning and output signal above 90%.

Two-Wire I/O

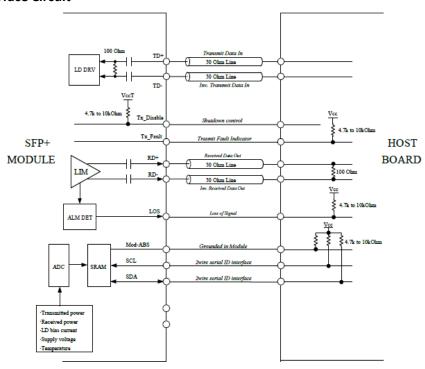
Parameter	Symbol	Min.	Max.	Unit	Notes
Clock Frequency	fSCL	0.1	400	KHz	1
Clock Pulse Width - Low	tLOW	1.3		us	
Clock Pulse Width - High	tHIGH	0.6		us	
START Hold Time	tHD:STA	0.6		us	
START Set-Up Time	tSU:STA	0.6		us	
Data In Hold Time	tHD:DAT	0		ns	
Data In Set-Up Time	tSU:DAT	100		ns	
Input Rise Time (100KHz) from (VIL, Max0.15) to (VIH, Min.+0.15)	Tr,100		1000	ns	
Input Rise Time (400KHz) from (VIL, Max0.15) to (VIH, Min.+0.15)	Tr,400		300	ns	
Input Fall Time (100KHz) from (VIH, Min.+0.15) to (VIL, Max0.15)	Tf,100		300	ns	
Input Fall Time (400KHz) from (VIH, Min.+0.15) to (VIL, Max0.15)	Tf,400		300	ns	
STOP Set-Up Time	tSU:STO	0.6		us	
Time Bus is Free Before a New Transmission Can Start	tBUF	20		us	
Time to Initialize	T_init		300	ms	
Clock Stretching	T_clock_hold		500	us	
Complete Single or Sequential Write Up to 4 Byte	tWR		40	ms	
Complete Sequential Write of 5-8 Bytes	tWR		80	ms	
Endurance of User Writable EEPROM (Write Cycles)		10k		cycle	

Notes:

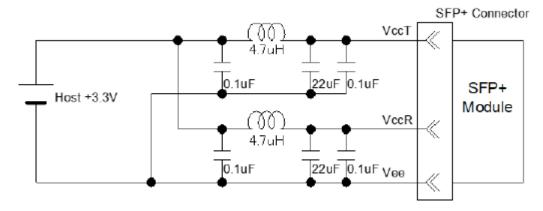
1. The module shall operate with fSCL up to 100kHz without requiring clock stretching. The module may clock stretch with fSCL greater than 100kHz and up to 400kHz.

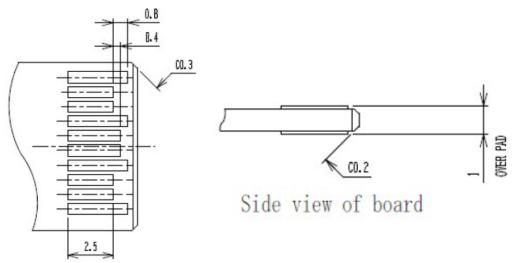
Pin Descriptions

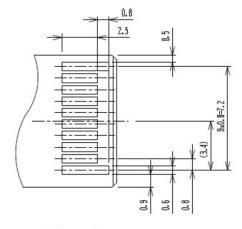
Pin	Symbol	Name/Description	Plug Seq.	Notes
1	VeeT	Transmitter Ground.	1	
2	Tx_Fault	Transmitter Fault Indication.	3	
3	Tx_Disable	Transmitter Disable.	3	
4	SDA	2-Wire Serial Interface Data.	3	
5	SCL	2-Wire Serial Interface Clock.	3	
6	MOD_ABS	Module Absent.	3	
7	RS0	Rate Select 0. Optionally controls.	3	
8	Rx_LOS	Receiver Loss of Signal Indication.	3	
9	RS1	Rate Select 1. Optionally controls.	3	
10	VeeR	Receiver Ground.	1	
11	VeeR	Receiver Ground.	1	
12	RD-	Receiver Inverted Data Output.	3	
13	RD+	Receiver Non-Inverted Data Output.	3	
14	VeeR	Receiver Ground.	1	
15	VccR	Receiver 3.3V Supply.	2	
16	VccT	Transmitter 3.3V Supply.	2	
17	VeeT	Transmitter Ground.	1	
18	TD+	Transmitter Non-Inverted Data Input.	3	
19	TD-	Transmitter Inverted Data Input.	3	
20	VeeT	Transmitter Ground.	1	


Notes:

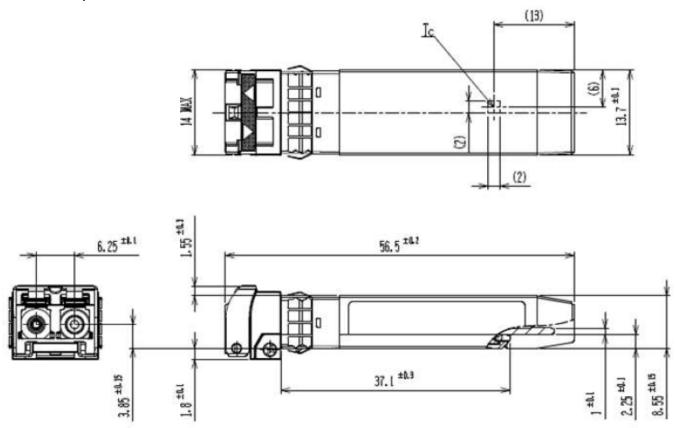
- 1. The case makes electrical contact to the cage before any of the board edge contacts are made.
- 2. The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
- 3. SCL, SDA, and MOD_ABS should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.
 - SCL is the clock line of the 2-wire serial interface for serial ID.
 - SDA is the data line of the 2-wire serial interface for serial ID.
 - MOD_ABS is grounded by the module to indicate that the module is present.
- 4. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP+ connector pin. Recommended host board power supply filtering is shown below.
- 5. TD- and TD+ are the differential transmitter inputs. They are AC coupled, differential lines with 100Ω differential termination inside the module.
- 6. RD- and RD+ are the differential receiver outputs. They are AC coupled, 100Ω differential lines which should be terminated with 100Ω (differential) at the host.

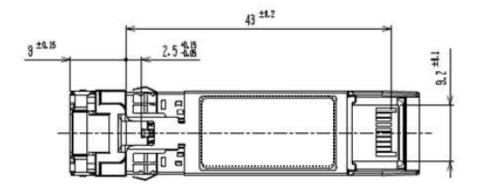

Block Diagram of the Transceiver


Recommended Interface Circuit


Power Supply Filter

Circuit Board Connector Layout




Top view of board

Bottom view of board

Mechanical Specifications

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

