SFP-1GB-BXD53-80-C-OPC Cisco® Compatible TAA 1000Base-BX SFP Transceiver (SMF, 1550nmTx/1310nmRx, 80km, LC, DOM) #### **Features** - INF-8074 and SFF-8472 Compliance - Simplex LC Connector - Uncooled DFB transmitter and PIN receiver - Single-mode Fiber - Commercial Temperature 0 to 70 Celsius - Hot Pluggable - Metal with Lower EMI - Excellent ESD Protection - RoHS Compliant and Lead Free ## **Applications:** • 1000Base Ethernet ### **Product Description** This Cisco® compatible SFP transceiver provides 1000Base-BX throughput up to 80km over single-mode fiber (SMF) using a wavelength of 1550nmTx/1310nmRx via an LC connector. This bidirectional unit must be used with another transceiver or network appliance of complementing wavelengths. It is guaranteed to be 100% compatible with the equivalent Cisco® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty. OptioConnect's transceivers are RoHS compliant and lead-free. # **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |-----------------------------|--------|------|------|------|------|-------| | Maximum Supply Voltage | Vcc | -0.5 | | 4.0 | V | | | Storage Temperature | Tstg | -40 | | 85 | °C | | | Operating Case Temperature | Тс | -10 | 25 | 70 | °C | | | Operating Relative Humidity | RH | 5 | | 95 | % | | | Power Supply Current | Icc | | | 300 | mA | | | Data Rate | | 0.1 | | 1.25 | Gbps | | # **Electrical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |---|----------------|-------|------|-------|-------|-------| | Supply Voltage | Vcc | 3.135 | 3.3 | 3.465 | V | | | Module Supply Current | Icc | | | 300 | mA | | | Power Dissipation | PD | | | 1000 | mW | | | Transmitter Differential Input Voltage (TD+/-) | | 300 | | 2200 | mVp-p | 1 | | Receiver Differential Output Voltage (RD+/-) | | 600 | | 1200 | mVp-p | 2 | | Low-Speed Output: Transmitter Fault (Tx_Fault)/Loss of Signal (LOS) | VOH | 2.0 | | Vcc | V | 3 | | (1x_rault)/ Loss of Signal (LOS) | VOL | 0 | | 0.8 | V | | | Low-Speed Input: Transmitter | VIH | 2.0 | | Vcc | V | 4 | | Fault (Tx_Fault), MOD_DEF1, MOD_DEF2 | VIL | 0 | | 0.8 | V | | | Timing Characteristics | | | | | | | | Tx_Disable Assert Time | T_off | | | 10 | us | | | Tx_Disable Negate Time | T_on | | | 1 | ms | | | Time to Initialize, Includes Reset of Tx_Fault | T_init | | | 300 | ms | | | Tx_Fault from Fault to Assertion | T_fault | | | 100 | us | | | Tx_Disable Time to Start Reset | T_reset | 10 | | | us | | | Receiver LOS Assert Timer (On to Off) | T_D,
Rx_LOS | | | 80 | us | | | Receiver LOS Assert Timer (Off to On) | T_A,
Rx_LOS | | | 80 | us | | | Serial I2C Clock Rate | I2C_Clock | | | 100 | kHz | | ## Notes: - 1. Internally AC coupled and terminated to 100Ω differential load. - 2. Internally AC coupled but requires a 100Ω differential termination or internal to serializer. - 3. Pulled up externally with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board to VccT/R. - 4. MOD_DEF1 and MOD_DEF2 must be pulled up externally with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board to VccT/R. # **Optical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |-----------------------------|--|------|------|------|------|-------| | Transmitter | | | | | | | | Launch Optical Power | Ро | 0 | | 5 | dBm | | | Center Wavelength | λC | 1530 | 1550 | 1570 | nm | | | Extinction Ratio | ER | 9 | | | dB | | | Spectral Width (-20dB) | Δλ | | | 1 | nm | | | Side-Mode Suppression Ratio | SMSR | 30 | | | dB | | | Optical Rise/Fall Time | Tr/Tf | | | 260 | ps | | | POUT @ Tx_Disable Asserted | Poff | | | -45 | dBm | | | Eye Diagram | IEEE Std 802.3-2005 1000Base-BX-D Compatible | | | | | | | Receiver | | | | | | | | Wavelength Range | | 1260 | 1310 | 1360 | nm | | | Receiver Sensitivity | S | | | -26 | dBm | 1 | | Receiver Overload | Pol | -3 | | | dBm | 1 | | Optical Return Loss | ORL | 12 | | | dB | | | LOS De-Assert | LOSD | | | -27 | dBm | | | LOS Assert | LOSA | -35 | | | dBm | | | LOS Hysteresis | | 0.5 | 3 | 5 | dB | | # Notes: 1. Measured with a PRBS 2^7 -1 test pattern @1.25Gbps with BER<10⁻¹². ## **Pin Descriptions** | Pin | Symbol | Name/Description | Plug Seq. | Notes | |-----|-------------|---|-----------|-------| | 1 | VeeT | Transmitter Ground. | 1 | | | 2 | Tx_Fault | Transmitter Fault Indication. | 3 | 1 | | 3 | Tx_Disable | Transmitter Disable. Module disables on "high" or "open." | 3 | 2 | | 4 | MOD_DEF2 | Module Definition 2. 2-Wire Serial ID Interface. | 3 | 3 | | 5 | MOD_DEF1 | Module Definition 1. 2-Wire Serial ID Interface. | 3 | 3 | | 6 | MOD_DEF0 | Module Definition 0. Grounded within the module. | 3 | 3 | | 7 | Rate Select | Not Connected. Function Not Available. | 3 | | | 8 | LOS | Loss of Signal. | 3 | 4 | | 9 | VeeR | Receiver Ground. | 1 | | | 10 | VeeR | Receiver Ground. | 1 | | | 11 | VeeR | Receiver Ground. | 1 | | | 12 | RD- | Inverse Received Data Out. | 3 | 5 | | 13 | RD+ | Received Data Out. | 3 | 5 | | 14 | VeeR | Receiver Ground. | 1 | | | 15 | VccR | 3.3 ± 5% Receiver Power. | 2 | 6 | | 16 | VccT | 3.3 ± 5% Transmitter Power. | 2 | 6 | | 17 | VeeT | Transmitter Ground. | 1 | | | 18 | TD+ | Transmitter Data In. | 3 | 7 | | 19 | TD- | Inverse Transmitter Data In. | 3 | 7 | | 20 | VeeT | Transmitter Ground. | 1 | | ### Notes: - 1. Tx_Fault is an open collector/drain output that should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board. Pull-up voltage between 2.0V and VccT/R+0.3V. When "high," output indicates a laser fault of some kind. "Low" indicates normal operation. In the low state, the output will be pulled to <0.8V. - 2. Tx_Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\Omega$ to $10k\Omega$ resistor. Its states are: Low (0V - 0.8V): Transmitter On. Between (0.8V and 2.0V): Undefined. High (2.0V – VccT): Transmitter Disabled. Open: Transmitter Disabled. 3. MOD_DEF0, 1, & 2. These are the module definition pins. They should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR. MOD DEFO is grounded by the module to indicate that the module is present. MOD_DEF1 is the clock line of the 2-wire serial interface for optional serial ID. MOD_DEF2 is the data line of the 2-wire serial interface for optional serial ID. 4. LOS (Loss of Signal) is an open collector/drain output that should be pulled up with a $4.7k\Omega$ to $10k\Omega$ - resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When "high," this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). "Low" indicates normal operation. In the low state, the output will be pulled to <0.8V. - 5. RD-/+. These are the differential receiver outputs. They are AC-coupled, 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. - VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP connector pin. The in-rush current will typically be more than 30mA above the steady state supply current after 500ns. - 7. TD-/+. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential terminations inside the module. The AC coupling is done inside the module and is thus not required on the host board. ### **Pin Connectors** # **Recommended Host Board Power Supply Circuit** # **Recommended Application Interface Circuit** # **Mechanical Specifications** Unit:mm ## **OptioConnect** ### Innovation for the Future of High-Speed Networking #### Who We Are OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures. ### What We Do At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with: - Superior Performance - Network and traffic optimization - Intelligent energy management - Seamless OEM compatibility - Scalable cost-efficiency ### **Smarter Networks by Design** Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform. ### **Our Team** Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions. ### **Our Mission** To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world. ### **Let's Connect** Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com