GLC-SX-MM-RGD-OPC Cisco® GLC-SX-MM-RGD Compatible TAA 1000Base-SX SFP Transceiver (MMF, 850nm, 550m, LC, -40 to 85C) #### **Features** - INF-8074 and SFF-8472 Compliance - Duplex LC Connector - Multi-mode Fiber - Industrial Temperature -40 to 85 Celsius - Hot Pluggable - Metal with Lower EMI - Excellent ESD Protection - RoHS Compliant and Lead Free ### **Applications:** - 1000Base-SX Ethernet - 1x Fibre Channel - Access and Enterprise #### **Product Description** This Cisco® GLC-SX-MM-RGD compatible SFP transceiver provides 1000Base-SX throughput up to 550m over multi-mode fiber (MMF) using a wavelength of 850nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Cisco® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. It is built to meet or exceed the specifications of Cisco®, as well as to comply with MSA (Multi-Source Agreement) standards to ensure seamless network integration. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty. OptioConnect's transceivers are RoHS compliant and lead-free. TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open internaltional trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.") # **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Тур. | Max. | Unit | |------------------------------|--------|------|-------|------|------| | Supply Voltage | Vcc | -0.5 | | 4.0 | V | | Storage Temperature | TS | -40 | | 85 | °C | | Case Operating Temperature | Тс | -40 | | 85 | °C | | Operating Humidity | RH | 5 | | 95 | % | | Data Rate (Gigabit Ethernet) | | | 1.25 | | Gbps | | Data Rate (Fibre Channel) | | | 1.063 | | Gbps | | 50/125μm MMF | L | | | 550 | m | # Electrical Characteristics (TOP=25°C, Vcc=3.3V) | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |--------------------------------|----------|---------|------|---------|------|-------| | Power Supply Voltage | Vcc | 3.13 | 3.30 | 3.47 | V | | | Power Supply Current | Icc | | | 250 | mA | | | Transmitter | | | | | | | | Input differential impedance | Rin | | 100 | | Ω | 1 | | Single ended data input swing | Vin, pp | 250 | | 1200 | mV | | | TX Disable-High | | Vcc-1.3 | | Vcc | V | | | TX Disable-Low | | Vee | | Vee+0.8 | V | | | TX Fault-High | | Vcc-0.5 | | Vcc | V | | | TX Fault-Low | | Vee | | Vee+0.5 | V | | | Receiver | | | | | | | | Single ended data output swing | Vout, pp | 300 | 400 | 800 | mV | 2 | | Data output rise time | tr | | | 175 | ps | 3 | | Data output fall time | tf | | | 175 | ps | 3 | | LOS-High | | Vcc-0.5 | | Vcc | V | | | LOS-Low | | Vee | | Vee+0.5 | V | | ## Notes: - 1. AC coupled. - 2. Into 100 ohm differential termination. - 3. 20% 80% # **Optical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |--------------------------|-------------------|------|------|------|------|-------| | Transmitter | | | | | | | | Average Output Power | PO | -9 | | -4 | dBm | 1 | | Optical Wavelength | λ | 830 | 850 | 860 | nm | | | Spectral Width | σ | | | 0.85 | nm | | | Optical Rise/Fall Time | tr/tf | | | 260 | ps | 2 | | Total Jitter | TJ | | | 200 | ps | | | Optical Extinction Ratio | ER | 9 | | | dB | | | Receiver | | | | | | | | Receiver Sensitivity | RSENS | | | -18 | dBm | 3,4 | | Maximum Received Power | RX _{MAX} | 0 | | | dBm | | | Centre Wavelength | λC | 770 | | 860 | nm | | | LOS De-Assert | LOSD | | | -26 | dBm | | | LOS Assert | LOSA | -40 | | | dBm | | | LOS Hysteresis | | 0.5 | | 5 | dB | | ### Notes: - 1. Class 1 Laser Safety. - 2. Unfiltered, 20%-80%. Complies with GE and 1x FC eye masks when filtered. - 3. Measured with conformance signals defined in FC-PI-2 Rev. 10.0 specifications. - 4. Measured with PRBS 2⁷-1 at 10⁻¹⁰ BER. ## **Pin Descriptions** | Pin | Symbol | Name/Descriptions | Ref. | |-----|-------------|--|------| | 1 | VeeT | Transmitter Ground (Common with Receiver Ground) | 1 | | 2 | TX Fault | Transmitter Fault. | | | 3 | TX Disable | Transmitter Disable. Laser output disabled on high or open. | 2 | | 4 | MOD DEF (2) | Module Definition 2. Data line for Serial ID. | 3 | | 5 | MOD_DEF (1) | Module Definition 1. Clock line for Serial ID. | 3 | | 6 | MOD_DEF (0) | Module Definition 0. Grounded within the module. | 3 | | 7 | Rate Select | No connection required. | | | 8 | LOS | Loss of Signal indication. Logic 0 indicates normal operation. | 4 | | 9 | VeeR | Receiver Ground (Common with Transmitter Ground) | 1 | | 10 | VeeR | Receiver Ground (Common with Transmitter Ground) | 1 | | 11 | VeeR | Receiver Ground (Common with Transmitter Ground) | 1 | | 12 | RD- | Receiver Inverted DATA out. AC Coupled. | | | 13 | RD+ | Receiver Non-inverted DATA out. AC Coupled. | | | 14 | VeeR | Receiver Ground (Common with Transmitter Ground) | 1 | | 15 | VccR | Receiver Power Supply. | | | 16 | VccT | Transmitter Power Supply. | | | 17 | VeeT | Transmitter Ground (Common with Receiver Ground) | 1 | | 18 | TD+ | Transmitter Non-Inverted DATA in. AC Coupled. | | | 19 | TD- | Transmitter Inverted DATA in. AC Coupled. | | | 20 | VeeT | Transmitter Ground (Common with Receiver Ground) | 1 | ### Notes: - 1. Circuit ground is internally isolated from chassis ground. - 2. Laser output disabled on TX Disable >2.0V or open, enabled on TX Disable <0.8V. - 3. Should be pulled up with 4.7k-10kohms on host board to a voltage between 2.0V and 3.6V. MOD_DEF (0) pulls line low to indicate module is plugged in. - 4. LOS is open collector output. Should be pulled up with 4.7k-10kohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. Pin-out of connector Block on Host board ## **Recommend Circuit Schematic** ## **Mechanical Specifications** Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA). ### **EEPROM Information** EEPROM memory map specific data field description is as below: ### **OptioConnect** ### Innovation for the Future of High-Speed Networking #### Who We Are OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures. #### What We Do At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with: - Superior Performance - Network and traffic optimization - Intelligent energy management - Seamless OEM compatibility - Scalable cost-efficiency ### **Smarter Networks by Design** Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform. ### **Our Team** Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions. ### **Our Mission** To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world. ### **Let's Connect** Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com