

QSFP-40G-SR4-OPC

Cisco® QSFP-40G-SR4 Compatible TAA 40GBase-SR4 QSFP+ Transceiver (MMF, 850nm, 150m, MPO, DOM)

Features

- 4-Channel Full-Duplex Transceiver Module
- Hot-Pluggable
- Maximum Link Length of 150m on OM4 MMF
- Multi-Rate Capability: 1.06Gbps to 10.5Gbps Per Channel
- Maximum Power Dissipation: 1W
- Reliable VCSEL Array Technology
- Single 1x12 MPO Receptacle
- Operating Temperature: 0 to 70 Celsius
- RoHS Compliant and Lead-Free
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 40GBase Ethernet
- 4x10G Breakout Option
- Access and Enterprise

Product Description

This Cisco® QSFP-40G-SR4 compatible QSFP+ transceiver provides 40GBase-SR4 throughput up to 150m over multi-mode fiber (MMF) using a wavelength of 850nm via an MPO connector. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Cisco®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5		3.6	V	
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Relative Humidity (Non-Condensing)	RH	0		85	%	
Damage Threshold (Per Lane)	DT	3.4			dBm	
Maximum Aggregate Data Rate			42.0		Gbps	
Bit Rate Per Lane	BR	1062		10500	Mbps	1
Bit Error Ratio	BER			10-12		2
Link Distance on OM3 MMF	D			100	m	3
Link Distance on OM4 MMF	D			150	m	3

Notes:

- Compliant with 40G Ethernet. Compatible with 1/10 Gigabit Ethernet and 1/2/4/8/10G Fibre Channel.
 Tested with a PRBS 2³¹-1 test pattern.
- 3. Per 40GBASE-SR4, IEEE 802.3ba.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.15	3.3	3.45	V	
Supply Current	Icc			300	mA	
Transmit Turn-On Time				2000	ms	1
Power Consumption			1		W	
Transmitter						
Single-Ended Input Voltage Tolerance	VINT	-0.3		4.0	V	
Differential Data Input Swing	VIN,pp	180		1200	mVp-p	2
Differential Input Threshold			50		mV	
AC Common-Mode Input Voltage Tolerance (RMS)		15			mV	
J2 Jitter Tolerance	Jt2	0.17			UI	
J9 Jitter Tolerance	Jt9	0.29			UI	
Data-Dependent Pulse Width Shrinkage	DDPWS	0.07			UI	
Differential Input Return Loss		Per IEEE P802.3ba, Section 86A.4.1.1			dB	3
Eye Mask Coordinates: (X1, X2, Y1, Y2)		(0.11, 0.31, 95, 350)			UI, mV	4
Receiver						
Single-Ended Output Voltage		-0.3		4.0	V	
Differential Data Output Swing	VOUT,pp	0		800	mVp-p	3, 4
AC Common-Mode Output Voltage (RMS)				7.5	mV	
Termination Mismatch at 1MHZ				5	%	
Output Transition Time (20-80%)		28			ps	
J2 Jitter Output	Jo2			0.42	UI	
J9 Jitter Output	Jo9			0.65	UI	
Power Supply Ripple Tolerance	PSR	50			mVp-p	
Differential Output Return Loss		Per IEEE P802.3ba, Section 86A.4.2.1		dB	5	
Common-Mode Output Return Loss		Per IEEE P802.3ba, Section 86A.4.2.2			dB	5
Eye Mask Coordinates #1: (X1, X2, Y1, Y2)		(0.29, 0.5, 150, 425)			UI, mV	6

Notes:

- 1. From power-on and end of any fault conditions.
- 2. After internal AC coupling. Self-biasing 100 Ω differential input.
- 3. AC coupled with 100Ω differential output impedance.
- 4. Settable in 4 discrete steps via the I2C interface.
- 5. 10MHz to 11.1GHz range.
- 6. Hit ratio = $5x10E^{-5}$.

Optical Characteristics

Optical Characteristics Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter							
Signaling Speed Per Lane					10.5	GBd	1
Center Wavelength			840		860	nm	
RMS Spectral Width	SW			0.65	nm		
Average Launch Power Pe	er Lane	TXP _X	-7.6		-1.0	dBm	
Transmit OMA Per Lane		TxOMA	-5.6		3.0	dBm	2
Difference in Power Betw	een Any Two Lanes (OMA)	DP _X			4.0	dB	
Peak Power Per Lane		PPX			4.0	dBm	
Launch Power (OMA) Min	us TDP Per Lane	P-TDP	-6.5			dBm	
TDP Per Lane		TDP			3.5	dBm	
Optical Extinction Ratio		ER	3.0			dB	
Optical Return Loss Tolera	ance	ORL			12	dB	
Average Launch Power of				-30	dBm		
Relative Intensity Noise		RIN			-128	dB/Hz	
Encircled Flux		FLX	>86% at 19µm <30% at 4.5µm			dBm	
Transmitter Eye Mask Def		(0.23, 0.34, 0.43, 0.27, 0.35, 0.4)					
Receiver Module Output	(TP4)						
Signaling Speed Per Lane					10.5	GBd	3
Center Wavelength			840		860	nm	
Damage Threshold		DT	3.4			dBm	
Average Receive Power P	er Lane	RXP _X	-9.9		2.4	dBm	
Receive Power (OMA) Per	Lane	RxOMA			3.0	dBm	
Stressed Receiver Sensitiv	vity (OMA) Per Lane	SRS			-5.4	dBm	
Peak Power Per Lane		PPX			4	dBm	
Receiver Reflectance		Rfl			-12	dB	
Vertical Eye Closure Pena	lty Per Lane				1.9	dB	
Stressed Eye J2 Jitter Per Lane					0.3	UI	
Stressed Eye J9 Jitter Per Lane					0.47	UI	
OMA of Each Aggressor Lane					-0.4	dBm	
Rx Jitter Tolerance Jitter Frequency			(75, 5)			kHz,	
	P-P Amplitude		(375, 1)			- UI	
LOS De-Assert		LOSD			-12	dBm	
LOS Assert		LOSA	-30			dBm	
LOS Hysteresis			0.5			dBm	

Notes:

- 1. The transmitter consists of 4 lasers operating at a maximum rate of 10.5Gbps each.
- 2. Even if the TDP is < 0.9dB, the OMA minimum must exceed this value.
- 3. Receiver consists of 4 photodetectors operating at a maximum rate of 10.5Gbps each.

Pin Descriptions

Pin	Symbol	Name/Descriptions	Notes
1	GND	Module Ground.	1
2	Tx2-	Transmitter Inverted Data Input.	
3	Tx2+	Transmitter Non-Inverted Data Input.	
4	GND	Module Ground.	1
5	Tx4-	Transmitter Inverted Data Input.	
6	Tx4+	Transmitter Non-Inverted Data Input.	
7	GND	Module Ground.	1
8	ModSelL	Module Select.	
9	ResetL	Module Reset.	
10	VccRx	+3.3V Receiver Power Supply.	
11	SCL	2-Wire Serial Interface Clock.	
12	SDA	2-Wire Serial Interface Data.	
13	GND	Module Ground.	1
14	Rx3+	Receiver Non-Inverted Data Output.	
15	Rx3-	Receiver Inverted Data Output.	
16	GND	Module Ground.	1
17	Rx1+	Receiver Non-Inverted Data Output.	
18	Rx1-	Receiver Inverted Data Output.	
19	GND	Module Ground.	1
20	GND	Module Ground.	1
21	Rx2-	Receiver Inverted Data Output.	
22	Rx2+	Receiver Non-Inverted Data Output.	
23	GND	Module Ground.	1
24	Rx4-	Receiver Inverted Data Output.	
25	Rx4+	Receiver Non-Inverted Data Output.	
26	GND	Module Ground.	1
27	ModPrsL	Module Present.	
28	IntL	Interrupt.	
29	VccTx	+3.3V Transmitter Power Supply.	

30	Vcc1	+3.3V Power Supply.	
31	LPMode	Low-Power Mode.	
32	GND	Module Ground.	1
33	Tx3+	Transmitter Non-Inverted Data Input.	
34	Tx3-	Transmitter Inverted Data Input.	
35	GND	Module Ground.	1
36	Tx1+	Transmitter Non-Inverted Data Input.	
37	Tx1-	Transmitter Inverted Data Input.	
38	GND	Module Ground.	1

Notes:

1. The circuit ground is internally isolated from the chassis ground.

Electrical Pin-Out Details

Top Side Viewed from Top

Bottom Side Viewed from Bottom

Optical Lane Assignment (Front View of MPO Receptacle)

Mechanical Specifications

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

