

SFP-10G-BX-U-20-OPC

Cisco® SFP-10G-BX-U-20 Compatible TAA 10GBase-BX SFP+ Transceiver (SMF, 1270nmTx/1330nmRx, 20km, LC, DOM)

Features

- SFF-8432 and SFF-8472 Compliance
- Simplex LC Connector
- Uncooled DFB transmitter and PIN receiver
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 10GBase-BX Ethernet
- 8x/10x Fibre Channel
- Access, Metro and Enterprise

Product Description

This Cisco® SFP-10G-BX-U-20 compatible SFP+ transceiver provides 10GBase-BX throughput up to 20km over single-mode fiber (SMF) using a wavelength of 1270nmTx/1330nmRx via an LC connector. This bidirectional unit must be used with another transceiver or network appliance of complementing wavelengths. It can operate at temperatures between 0 and 70C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Cisco®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5		4	V	1
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Data Rate	DR	9.83		11.3	Gbps	
Bit Error Rate	BER			10 ⁻¹²		

Notes:

- 1. For the electrical power interface.
- 2. IEEE 802.3ae.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Power Supply Voltage	Vcc	3.14	3.3	3.46	V		
Power Supply Current	Icc		250	360	mA		
Transmitter							
Input Differential Impedance	RIN		100		Ω		
Differential Data Input Swing	VIN,pp	180		700	mV		
Transmit Disable Voltage	VD	2		Vcc	V		
Transmit Enable Voltage	VEN	Vee		Vee+0.8	V		
Receiver							
Differential Data Output Swing	VOUT,pp	300		850	mV		
Data Output Rise/Fall Time (20-80%)	Tr/Tf	28			ps		
LOS Assert	VLOSA	2		Host_Vcc	V		
LOS De-Assert	VLOSD	Vee		Vee+0.5	V		

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Output Optical Power	PTx	-8.2		0.5	dB	1
Optical Center Wavelength	λC	1260	1270	1280	nm	
Extinction Ratio	ER	3.5			dB	
Spectral Width (-20dB)	Δλ			0.6	nm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Relative Intensity Noise	RIN			-128	dB/Hz	
Transmitter Dispersion Penalty	TDP			3.2	dB	
Launch Power of Off Transmitter	Poff			-30	dBm	2
Transmitter Jitter		According to IEEE 802.3ae Requirements				
Receiver						
Receiver Overload	Pol	0.5			dBm	
Optical Center Wavelength	λC	1320	1330	1340	nm	
Receiver Sensitivity	Rx_sen			-14.4	dBm	3
Receiver Reflectance	TRrx			-12	dB	
LOS Assert	LOSA	-30			dBm	
LOS De-Assert	LOSD			-17	dBm	
LOS Hysteresis	LOSH	0.5			dB	

Notes:

- 1. Average. Normal temperature optical power range: -2~0.5dBm.
- 2. Average.
- 3. Average. Measured with worst ER: BER<10 $^{-12}$ and 2 31 -1 PRBS.

Pin Descriptions

Pin	Symbol	Name/Description	Notes
1	VeeT	Transmitter Ground (Common with Receiver Ground).	1
2	Tx_Fault	Transmitter Fault.	2
3	Tx_Disable	Transmitter Disable.	3
4	SDA	2-Wire Serial Interface Data.	4
5	SCL	2-Wire Serial Interface Clock.	4
6	MOD_ABS	Module Absent. Grounded within the module.	4
7	RS0	No Connection Required.	
8	LOS	Loss of Signal Indication. "Logic 0 " indicates normal operation.	5
9	RS1	No Connection Required.	1
10	VeeR	Receiver Ground (Common with Transmitter Ground).	1
11	VeeR	Receiver Ground (Common with Transmitter Ground).	1
12	RD-	Receiver Inverted Data Out. AC Coupled.	
13	RD+	Receiver Non-Inverted Data Out. AC Coupled.	
14	VeeR	Receiver Ground (Common with Transmitter Ground).	1
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	VeeT	Transmitter Ground. Common with Receiver Ground.	1
18	TD+	Transmitter Non-Inverted Data In. AC Coupled.	
19	TD-	Transmitter Inverted Data In. AC Coupled.	
20	VeeT	Transmitter Ground (Common with Receiver Ground).	1

Notes:

- 1. The circuit ground is isolated from the chassis ground.
- 2. Tx_Fault is the open collector output and should be pulled up with $4.7k\Omega$ to $10k\Omega$ on the host board to a voltage between 2V and Vcc+0.3V.
- 3. Disabled: Tdis>2V or open. Enabled: Tdis<0.8V.
- 4. Should be pulled up with $4.7k\Omega$ to $10k\Omega$ on the host board to a voltage between 2V and Vcc+0.3V.
- 5. LOS is open collector output and should be pulled up with $4.7k\Omega$ to $10k\Omega$ on the host board to a voltage between 2V and Vcc0.3V. Logic "0" indicates normal operation. Logic "1" indicates that the receiver signal is lost.

Pin Assignments

Block Diagram of Transceiver

Mechanical Specifications

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

