

CWDM-SFP25G-1330-10-OPC

Cisco® CWDM-SFP25G-1330-10 Compatible TAA 25GBase-CWDM SFP28 Transceiver (SMF, 1330nm, 10km, LC)

Features

- SFF-8432 and SFF-8472 Compliance
- Duplex LC Connector
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 25x Gigabit Ethernet over CWDM
- Access, Metro and Enterprise
- Mobile Fronthaul CPRI/OBSAI

Product Description

This Cisco® CWDM-SFP25G-1330-10 compatible SFP28 transceiver provides 25GBase-CWDM throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1330nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Cisco® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5		4.0	V	1
Storage Temperature	Tstg	-40		85	°C	2
Operating Case Temperature	Тс	0		70	°C	3
Data Rate	DR		24.3	26.5	Gb/s	4
Bit Error Rate	BER			5×10 ⁻⁵		5

Notes:

- 1. For Electrical power interface.
- 2. Ambient Temperature.
- 3. Case Temperature.
- 4. IEEE 802.3cc.
- 5. Measured with data rate at 25.78GBps, PRBS $2^{31} 1$.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Power Supply Voltage	Vcc	3.14	3.3	3.46	V		
Module Supply Current	Icc		220	450	mA	1	
Transmitter							
Input Differential Impedance	RIN		100		Ω		
Differential Data Input Swing	VIN, pp	250		900	mV		
Transmit Disable Voltage	Vd	2		Vcc	V		
Transmit Enable Voltage	Ven	Vee		Vee+0.8	V		
Receiver							
Differential Data Output Swing	Vout_pp	300		850	mV		
LOS Assert	Vlos_a	2		Vcc_host	V		
LOS De-Assert	Vlos_d	Vee		Vee+0.8	V		

Notes:

1. For electrical power interface.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter							
Output Optical Power	Ptx	2	4.5	7	dBm	1	
Optical Center Wavelength	λς	λc – 6.5	λς	λc + 6.5	nm	2	
Transmitter and Dispersion Penalty	TDP			2.7	dB		
Extinction Ratio	ER	3.5			dB		
Spectral Width(-20dB)	Δλ			1	nm		
Side Mode Suppression Ratio	SMSR	30			dB		
Transmitter Reflectance				12	dB		
Launch Power of OFF Transmitter	Pout_off			-30	dBm	1	
Receiver							
Optical Center Wavelength	λc	1260		1390	nm		
Receive Overload	Pol	2			dBm		
Receiver Sensitivity (OMA)@ 25.78 Gbps	Rx_sen			-13.3	dBm	3	
Receiver Reflectance	TRrx			-26	dB		
LOS Assert	LOSA	-30			dBm		
LOS De-Assert	LOSD			-14	dBm		
LOS Hysteresis	LOSH	0.5			dB		

Notes:

- 1. Average.
- 2. $\lambda c = 1271, 1291, 1311, 1331, 1351, 1371.$
- 3. Average optical power, measured with data rate at 25.78Gbps, PRBS $2^{31}-1$.

Pin Descriptions

Pin	Symbol	Name/Descriptions	Notes
1	VeeT	Transmitter Ground. Common with receiver ground.	1
2	TX_Fault	Transmitter Fault.	2
3	TX_Disable	Transmitter Disable. Laser output disables on high or open.	3
4	SDA	Two wire serial interface Data Line.	4
5	SCL	Two wire serial interface Clock Line.	4
6	MOD_ABS	Module Absent. Grounded within the module.	4
7	RS0	No connection required.	
8	LOS	Loss of signal indication. Logic 0 indicated normal operation.	5
9	RS1	No connection required.	1
10	VeeR	Receiver Ground. Common with transmitter ground.	1
11	VeeR	Receiver Ground. Common with transmitter ground.	1
12	RD-	Receiver Inverted DATA out. AC coupled.	
13	RD+	Receiver Non-Inverted DATA out. AC coupled.	
14	VeeR	Receiver Ground. Common with transmitter ground.	1
15	VccR	Receiver power supply.	
16	VccT	Transmitter power supply.	
17	VeeT	Transmitter ground. Common with receiver ground.	1
18	TD+	Transmitter Non-Inverted Data in. AC coupled.	
19	TD-	Transmitter Inverted Data in. AC coupled.	
20	VeeT	Transmitter Ground. Common with receiver ground.	1

Notes:

- 1. Circuit ground is isolated from chassis ground.
- 2. TX_Fault is the open collector output and should be pulled up with $4.7k\Omega-10k\Omega$ on host board to a voltage between 2V and Vcc+0.3V.
- 3. Disables: T_{DIS}>2V or open, Enabled T_{DIS}<0.8V.
- 4. Should be puled up with $4.7k\Omega-10k\Omega$ on host board to a voltage between 2V and Vcc+0.3V.
- 5. LOS is open collector output and should be pulled up with $4.7k\Omega-10k\Omega$ on host board to a voltage between 2V and Vcc0.3V, the logic "0" indicated normal operation, and the logic "1" indicates that the receiver signal is lost.

Block Diagram of Transceiver

Electrical Pad Layout

Mechanical Specifications

Typical Eye Diagram

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

