

CWDM-SFP-1510-160-OPC

Cisco® Compatible TAA 1000Base-CWDM SFP Transceiver (SMF, 1510nm, 160km, LC, DOM)

Features

- INF-8074 and SFF-8472 Compliance
- Duplex LC Connector
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- Gigabit Ethernet over CWDM
- Access and Enterprise

Product Description

This Cisco® compatible SFP transceiver provides 1000Base-CWDM throughput up to 160km over single-mode fiber (SMF) using a wavelength of 1510nm via an LC connector. It can operate at temperatures between 0 and 70C. The listed reach has been determined using a link budget calculation and tested in a standard environment. Actual link distances achieved will be dependent upon the deployed environment. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Cisco®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open internaltional trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Data Rate	DR	0.622		1.25	Gbps	
Bit Error Rate	BER			10 ⁻¹²		
Operating Case Temperature	Тс	0		70	С	1, 4
Storage Temperature	Tstg	-40		85	С	2
Supply Current	Icc		200	300	mA	3
Maximum Voltage	VMAX	-0.5		4	V	3

Notes:

- 1. Case temperature.
- 2. Ambient temperature.
- 3. For the electrical power interface.
- 4. Commercial temperature.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Input Voltage	Vcc	3.14	3.3	3.46	V		
Supply Current	Icc		200	300	mA	3	
Transmitter							
Input Differential Impedance	RIN		100		Ω		
Single-Ended Data Input Swing	VIN,pp	250		1200	mV		
Transmit Disable Voltage	VD	Vcc-1.3		Vcc	V		
Transmit Enable Voltage	VEN	Vee		Vee+0.8	V		
Transmit Disable Assert Time				10	us		
Receiver							
Single-Ended Data Output Swing	VOUT,pp	300	400	800	mV		
Data Output Rise/Fall Time	Tr/Tf		100	175	ps		
LOS Asserted	VLOSA	Vcc-0.5		Host_Vcc	V		
LOS De-Asserted	VLOSD	Vee		Vee+0.5	V		

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter							
Output Optical Power	PTX	3		7	dBm	1	
Optical Center Wavelength	λC	1505	1511	1517	nm		
Extinction Ratio	ER	9			dB		
Side-Mode Suppression Ratio	SMSR	30			dB		
Spectral Width (-20dB)	Δλ			1	nm		
Optical Rise/Fall Time (20-80%)	Tr/Tf			180	ps		
Relative Intensity Noise	RIN			-120	dB/Hz		
Transmitter Jitter (Pk-Pk)	TJ			100	ps		
Output Eye		Compliant with IEEE 802.3					
Receiver	<u> </u>						
Optical Input Wavelength	λC	1270		1620	nm		
Receiver Sensitivity	Rx_SEN			-34	dBm	2	
Receiver Overload	POL	-7			dBm		
LOS Assert	LOSA	-42			dBm		
LOS De-Assert	LOSD			-34	dBm		
LOS Hysteresis	LOSH	0.5			dB		

Notes:

- 1. Average launch power.
- 2. Measured with a 2^7 -1 test pattern over 120km @1.25Gbps with BER<10⁻¹².

Pin Descriptions

Pin	Symbol	Name/Description	Notes
1	VeeT	Transmitter Ground (Common with Receiver Ground).	1
2	Tx_Fault	Transmitter Fault.	
3	Tx_Disable	Transmitter Disable. Laser output disabled on "high" or "open."	2
4	SDA	2-Wire Serial Interface Data.	3
5	SCL	2-Wire Serial Interface Clock.	3
6	MOD_ABS	Module Absent. Grounded within the module.	3
7	RS0	No Connection Required.	
8	LOS	Loss of Signal Indication. "Logic 0" indicates normal operation.	4
9	RS1	No Connection Required.	1
10	VeeR	Receiver Ground (Common with Transmitter Ground).	1
11	VeeR	Receiver Ground (Common with Transmitter Ground).	1
12	RD-	Receiver Inverted Data Out. AC Coupled.	
13	RD+	Receiver Non-Inverted Data Out. AC Coupled.	
14	VeeR	Receiver Ground (Common with Transmitter Ground).	1
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	VeeT	Transmitter Ground (Common with Receiver Ground).	1
18	TD+	Transmitter Non-Inverted Data In. AC Coupled.	
19	TD-	Transmitter Inverted Data In. AC Coupled.	
20	VeeT	Transmitter Ground (Common with Receiver Ground).	1

Notes:

- 1. The circuit ground is isolated from the chassis ground.
- 2. Disabled: TDIS>2V or open, enabled: TDIS<0.8V.
- 3. Should be pulled up with $4.7k\Omega$ to $10k\Omega$ on the host board to a voltage between 2V and 3.6V.
- 4. LOS is open collector output.

Electrical Pad Layout

Block Diagram of Transceiver

Mechanical Specifications

All dimensions are ± 0.2 mm unless otherwise specified. Unit: mm

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

