

SFP-10/25G-LR-I-OPC

Cisco® SFP-10/25G-LR-I Compatible TAA 10/25GBase-LR-S SFP28 Transceiver (SMF, 1310nm, 10km, LC, DOM, -40 to 85C)

Features

- PIN photodiode receiver with limiting amplifier
- Compliant to SFP28 SFF standards
- Up to 10 km transmission length (LR)
- Data rate of up to 25.781Gbps
- 1310nm un-cooled, direct modulation laser
- Positive power supply lines: 3.3 V
- LC-Duplex Optical Receptacle
- Hot-Pluggable
- Operating Temperature: -40 to 85 Celsius
- RoHS Compliant and Lead-Free

Applications:

- 25GBase Ethernet
- Access and Enterprise

Product Description

This Cisco® SFP-10/25G-LR-I compatible SFP28 transceiver provides 25GBase-LR throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Cisco® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	TS	-40		85	°C	
Operating Case Temperature	Тс	-40	25	85	°C	
Relative Humidity	RH	5		95	%	
Data Rate			24.33 25.78		Gbps	
Bit Error Rate	BER			5x10 ⁻⁵		1
Supported Link Length on 9/125um SMF, 25.78GB/s	L		10		km	2

Notes:

- 1. Tested with PRBS 2³¹-1 test pattern for 25.78GBps operation.
- 2. Distances are based on FC-PI-6 Rev 3.1 and IEEE 802.3 standards with FEC.

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes	
Supply Voltage		Vcc	3.135	3.3	3.465	V		
Module Supply Current		Icc			450	mA		
Power Dissip	pation	P _D			1500	mW		
Data Rate		BR		25.78				
Transmitter								
Input Differ	ential Impedance	ZIN		100		Ω		
Differential Data Input Swing		Vin,pp	180		700	mVp-p		
TX Fault	Transmitter Fault	VOH	2.0		Host_Vcc	V		
	Normal Operation	VOL	0		0.8	V		
TX Disable	Transmitter Disable	VIH	2.0		Host_Vcc	V	T	
	Transmitter Enable	VIL	0		0.8	V		
Receiver	Receiver							
Output Differential Impedance		ZOUT		100		Ω		
Differential Data Output Swing		VOUT,pp	300		850	mVp-p	1	
Data Output Rise Time/Fall Time		Tr/Tf	15			ps	2	
RX_LOS	Loss of Signal (LOS)	VOH	2.0		Host_Vcc	V	3	
	Normal Operation	VOL	0		0.8	V	3	

Notes:

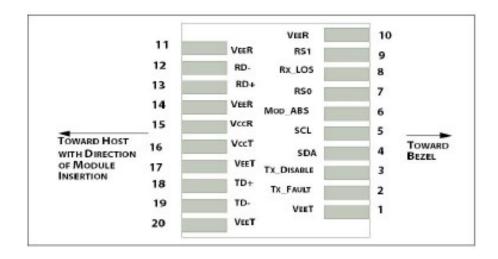
- 3. Internally AC coupled but requires an external 100Ω differential load termination.
- 4. 20-80%
- 5. LOS is an open collector output. Should be pulled up with $4.7K\Omega$ on the host board.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Launch Optical Power	Ро	-5		+2	dBm	1
Extinction Ratio	ER	3.5			dB	
Center Wavelength Range	λς	1295	1310	1325	nm	
Transmitter Dispersion Penalty	TDP			2.7	dB	
Spectral Width	Δλ			1	nm	2
Optical Rise/Fall Time @25.78GBps	Tr/Tf	15			ps	3
Optical Return Loss Tolerance	ORLT			12	dB	
Pout @TX_Disable Asserted	Poff			-30	dBm	
Receiver						
Center Wavelength	λς	1260	1310	1370	nm	
Receiver OMA Sensitivity	ROMA			-12	dBm	4
Receiver Overload (Pavg)	P _{MAX}	2			dBm	
Optical Return Loss	ORLT	26			dB	
LOS De-Assert	LOSD			-16	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis		0.5			dB	

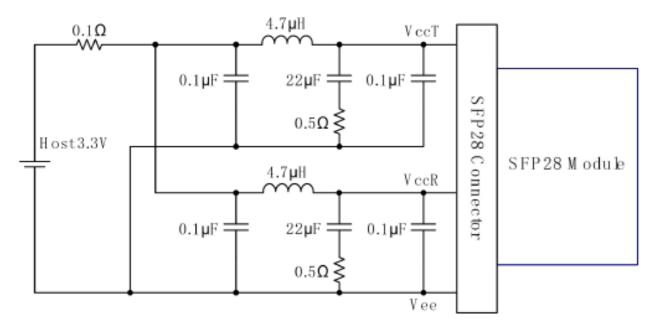
Notes:

- 1. Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulation.
- 2. 20dB spectral width.
- 3. Unfiltered, 20-80%.
- 4. Measured with PRBS 2³¹-1 at 5x10⁻⁵ BER.

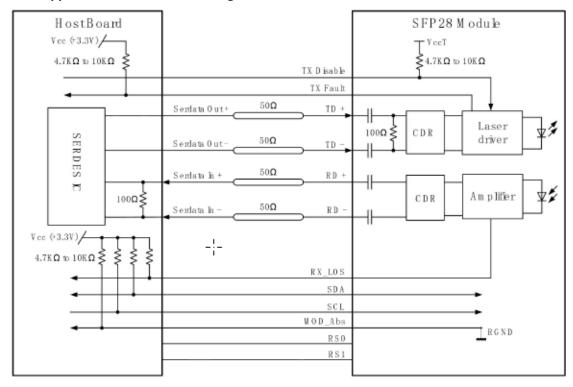

Pin Descriptions

Pin	Symbol	Name/Descriptions	Ref.
1	VeeT	Transmitter Ground.	1
2	TX_Fault	Transmitter Fault. LVTTL-O. "High" indicated a fault condition.	2
3	TX_Disable	Transmitter Disable. LVTTL-I. "High" or "open" disables the transmitter.	3
4	SDA	2-Wire Serial Interface Data. LVCMOS-I/O. MOD-DEF2.	4
5	SCL	2-Wire serial interface Clock. LVCMOS-I/O. MOD-DEF1.	4
6	MOD_ABS	Module Absent (Output). Connected to VeeT or VeeR in the module.	5
7	RS0	NA.	6
8	RX_LOS	Receiver Loss of Signal. LVTTL-O.	2
9	RS1	NA.	6
10	VeeR	Receiver Ground.	1
11	VeeR	Receiver Ground.	1
12	RD-	Inverse Received Data out. CML-O.	
13	RD+	Received Data out. CML-O.	
14	VeeR	Receiver Ground.	
15	VccR	+3.3V Receiver Power.	
16	VccT	+3.3V Transmitter Power.	
17	VeeT	Transmitter Ground.	1
18	TD+	Transmitter Data In. CML-I.	
19	TD-	Inverse Transmitter Data In. CML-I.	
20	VeeT	Transmitter Ground.	1

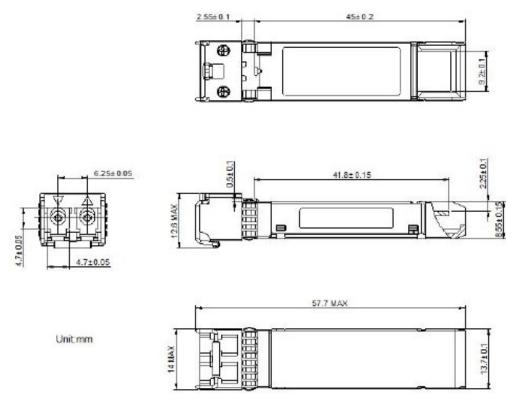
Notes:


- 1. The module signal grounds are isolated from the module case.
- 2. This is an open collector/drain output that on the host board requires a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to Host_Vcc.
- 3. This input is internally biased high with a 4.7K Ω to 10K Ω pull-up resistor to VccT.
- 4. 2-Wire Serial Interface Clock and Data lines require an external pull-up resistor dependent on the capacitance load.
- 5. This is a ground return that on the host board requires a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to Host_Vcc.
- 6. Rate select can also be set through the 2-wire bus in accordance with SFF-8472 v. 12.1. Rx Rate Select is set at Bit 3, Byte 110, and Address A2h, and Tx Rate Select is set at Bit 3, Byte 118, Address A2h.

Note: Writing a "1" selects maximum bandwidth operation. Rate select is the logic OR of the input state of Rate Select Pin and 2-wire bus.


Host PCB SFP28 pad assignment

Recommended Host Board



Recommended Host Board Power Supply Filter Network

Recommended Application Interface Block Diagram

Mechanical Specifications

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

