

AOC-Q28-100G-1M-OPC

Dell® Compatible TAA 100GBase-AOC QSFP28 to QSFP28 Active Optical Cable (850nm, MMF, 1m)

Features

- QSFP28 MSA compliant
- Four independent full-duplex channels
- Supports 103.1Gbps aggregate bit rate
- Operating case temperature: 0 to 70 Celsius
- 4x25G electrical interface (OIF CEI-28G-VSR)
- Single 3.3V power supply
- Maximum power consumption 2.5W each terminal
- RoHS Compliant and Lead Free

Applications:

- 100GBase Ethernet
- InfiniBand EDR

Product Description

This is a Dell® compatible 100GBase-AOC QSFP28 to QSFP28 active optical cable that operates over multi-mode fiber with a maximum reach of 1.0m (3.3ft). At a wavelength of 850nm, it has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. This active optical cable is TAA (Trade Agreements Act) compliant, and is built to comply with MSA (Multi-Source Agreement) standards. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

General Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit
Storage Temperature	Tstg	-40		85	°C
Operating Case Temperature	Тс	0		70	
Power Supply Voltage	Vcc	-0.5		3.6	V
Relative Humidity (Non-Condensing)	RH	0		85	%

Electrical Characteristics

Parameter	Test Point	Min.	Тур.	Max.	Unit	Notes	
Power Consumption				2.5	W	1	
Supply Current	Icc			757	mA	1	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V		
Data Rate Per Lane			25.78125		Gbps		
Data Rate Accuracy		-100		100	ppm		
Control Input Voltage - High		2		Vcc	V		
Control Input Voltage - Low		0		0.8	V		
Transmitter (Per Lane)							
Overload Differential Voltage	TP1a	900			mV		
Common-Mode Voltage (Vcm)	TP1	-350		2825	mV	2	
Differential Termination Resistance Mismatch	TP1			10	%	At 1MHz	
Differential Return Loss (SDD11)	TP1			See CEI- 28G0VSR Equation 13-19	dB		
Common-Mode to Differential Conversion and Differential to Common-Mode Conversion	TP1			See CEI- 28G-VSR Equation 13-20	dB		
Stressed Input Test	TP1a	See CEI-28G- VSR Section 13.3.11.2.1					
Receiver (Per Lane)							
Differential Voltage (Pk-Pk)	TP4			900	mV		
Common-Mode Voltage (Vcm)	TP4	-350		2850	mV	2	
Common-Mode Noise (RMS)	TP4			17.5	mV		
Differential Termination Resistance Mismatch	TP4			10	%	At 1MHz	

Differential Return Loss (SDD22)	TP4		See CEI- 28G-VSR Equation 13-19	dB	
Common-Mode to Differential Conversion and Differential to Common-Mode Conversion (SCC22)	TP4		-2	dB	3
Transition Time (20-80%)	TP4	9.5		ps	
Vertical Eye Closure (VEC)	TP4		5.5	dB	
Eye Width at 10 ⁻¹⁵ Probability (EW15)	TP4	0.57		UI	
Eye Height at 10 ⁻¹⁵ Probability (EH15)	TP4	0.57		UI	

Notes:

- 1. Per terminal.
- 2. Vcm is generated by the host. Specification includes the effects of ground offset voltage.
- 3. From 250MHz to 30GHz.

Pin Descriptions

Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground.	1
2	CML-I	Tx2-	Transmitter Inverted Data Input.	
3	CML-I	Tx2+	Transmitter Non-Inverted Data Input.	
4		GND	Module Ground.	1
5	CML-I	Tx4-	Transmitter Inverted Data Input.	
6	CML-I	Tx4+	Transmitter Non-Inverted Data Input.	
7		GND	Module Ground.	1
8	LVTTL-I	ModSelL	Module Select.	2
9	LVTTL-I	ResetL	Module Reset.	2
10		VccRx	+3.3V Receiver Power Supply.	
11	LVCMOS-I	SCL	2-Wire Serial Interface Clock.	2
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	2
13		GND	Module Ground.	1
14	CML-O	Rx3+	Receiver Non-Inverted Data Output.	
15	CML-O	Rx3-	Receiver Inverted Data Output.	
16		GND	Module Ground.	1
17	CML-O	Rx1+	Receiver Non-Inverted Data Output.	
18	CML-O	Rx1-	Receiver Inverted Data Output.	
19		GND	Module Ground.	1
20		GND	Module Ground.	1

21	CML-O	Rx2-	Receiver Inverted Data Output.	
22	CML-O	Rx2+	Receiver Non-Inverted Data Output.	
23		GND	Module Ground.	1
24	CML-O	Rx4-	Receiver Inverted Data Output.	
25	CML-O	Rx4+	Receiver Non-Inverted Data Output.	
26		GND	Module Ground.	1
27	LVTTL-O	ModPrsL	Module Present. Internally pulled down to the GND.	
28	LVTTL-O	IntL	Interrupt output should be pulled up on the host board.	2
29		VccTx	+3.3V Transmitter Power Supply.	
30		Vcc1	+3.3V Power Supply.	
31	LVTTL-I	LPMode	Low-Power Mode.	2
32		GND	Module Ground.	1
33	CML-I	Tx3+	Transmitter Non-Inverted Data Input.	
34	CML-I	Tx3-	Transmitter Inverted Data Input.	
35		GND	Module Ground.	1
36	CML-I	Tx1+	Transmitter Non-Inverted Data Input.	
37	CML-I	Tx1-	Transmitter Inverted Data Input.	
38		GND	Module Ground.	1

Notes:

- 1. The module circuit ground is isolated from the module chassis ground within the module.
- 2. Open collector. Should be pulled up with $4.7k\Omega$ to $10k\Omega$ on the host board to a voltage between 3.15V and 3.6V.

Electrical Pin-Out Details

Top Side Viewed from Top

Bottom Side Viewed from Bottom

Recommended Power Supply Filter

Block Diagram

Mechanical Specifications

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

