

QSFP-40G-SWDM4-DE-OPC

Dell® QSFP-40G-SWDM4-DE Compatible TAA 40GBase-SWDM4 QSFP+ Transceiver (MMF, 850nm, 350m, LC, DOM)

Features

- SFF-8436 Compliance
- Duplex LC Connector
- Multi-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 40GBase Ethernet
- Access and Enterprise

Product Description

This Dell® QSFP-40G-SWDM4-DE compatible QSFP+ transceiver provides 40GBase-SWDM4 throughput up to 350m over multi-mode fiber (MMF) using a wavelength of 850nm via an LC connector. It can operate at temperatures between 0 and 70C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Dell®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Characteristics

Characteristics			
Parameter	Value	Unit	Notes
Module Form Factor	QSFP+		
Maximum Aggregate Data Rate	41.2	Gb/s	
Maximum Data Rate per Lane	10.3	Gb/s	
Protocols Supported	40G Ethernet		
Electrical Interface and Pin-out	38-pin edge connector		Pin-out as defined by QSFP+ MSA
Maximum Power Consumption	2.5	Watts	
Management Interface	Serial, I2C-based, 400 kHz maximum frequency		As defined by the QSFP+ MSA

Data Rate Specifications

Parameter	Symbol	Min	Тур	Max	Units	Notes
Bit Rate per Lane	BR			10.3125	Mb/sec	1
Bit Error Ratio	BER			10-12		2
Link distance on OM3	d	0		240	meters	
Link distance on OM4	d	0		350	meters	

Notes:

- 1. Compliant with XLPPI per IEEE 802.3ba.
- 2. Tested with a PRBS 2³¹-1 test pattern.

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Maximum Supply Voltage	Vcc1, VccTx, VccRx	-0.5		3.6	V	
Storage Temperature	Ts	-40		85	°C	
Case Operating Temperature	ТОР	0		70	°C	
Relative Humidity (non-condensing)	RH	0		85	%	
Damage Threshold, per Lane	DT	4			dBm	

Electrical Characteristics ($T_{OP} = 0$ to 70° C, $V_{CC} = 3.1$ to 3.47 Volts)

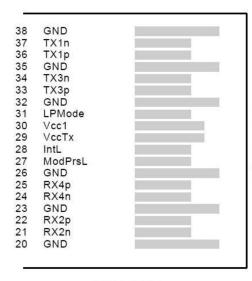
Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage	Vcc1, VccTx, VccRx	3.1		3.47	V	
Supply Current	Icc			0.9	А	1
Link turn-on time			<u>'</u>			
Transmit turn-on time				2000	ms	2
Transmitter (per Lane)						
Single-ended input voltage tolerance	VinT	-0.3		4.0	V	
Differential data input swing	Vin,pp	120		1200	mVpp	3
Differential input threshold			50		mV	
AC common mode input voltage tolerance (RMS)		15			mV	
Differential input return loss		Per IEEE P80	2.3ba, Secti	ion 86A.4.1.1	dB	4
J2 Jitter Tolerance	Jt2	0.17			UI	
J9 Jitter Tolerance	Jt9	0.29			UI	
Data Dependent Pulse Width Shrinkage	DDPWS	0.07			UI	
Eye mask coordinates {X1, X2, Y1, Y2}		0.11, 0.31 95, 350			UI mV	5
Receiver (per Lane)						
Single-ended output voltage		-0.3		4.0	V	
Differential data output swing	Vout,pp	200		400	mVpp	6, 7
		300		600	-	
		400		800		
		600		1200	.,	
AC common mode output voltage (RMS)				7.5	mV	
Termination mismatch at 1 MHx				5	%	
Differential output return loss		Per IEEE P802.3ba, Section 86A.4.2.1			dB	4
Common mode output return loss		Per IEEE P802.3ba, Section 86A.4.2.2			dB	4
Output transition time, 20% to 80%		28			ps	
J2 Jitter output	Jo2			0.42	UI	
J9 Jitter output	Jo9			0.65	UI	
Eye mask coordinates #1 {X1, X2, Y1, Y2}		0.29, 0.5 150, 425		UI mV	5	
Power Supply Ripple Tolerance	PSR	50			mVpp	

Notes:

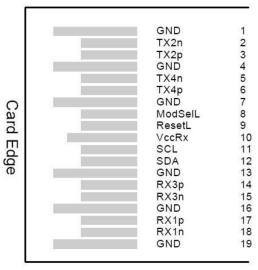
1. Will be <2.5W in link established mode. If the input optical signal is without data, the CDR will keep searching and push the supply current over the maximum spec.

- 2. From power-on and end of any fault conditions.
- 3. After internal AC coupling. Self-biasing 100 $\!\Omega$ differential input.
- 4. 10 MHz to 11.1 GHz range.
- 5. Hit ratio = $5 \times 10E-5$.
- 6. AC coupled with 100Ω differential output impedance.
- 7. Output voltage is settable in 4 discrete steps via I2C.

Optical Characteristics ($T_{OP} = 0$ to 70° C, $V_{CC} = 3.1$ to 3.47 Volts)


Per-channel optical characteristics vary over the 4 wavelengths. Below are the worst-case.

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Transmitter (each lane)						
Signaling Speed per Lane			10.3125		GBd	1
Lane center wavelengths			850 880 910 940		nm	
Spectral width @ 850nm	SBW			0.53		
Spectral width @ 880nm, 910nm, 940nm	SBW			0.59	nm	
Total Average Launch Power	POUT	-1.6		9.0	dBm	3
Average Launch Power per Lane	TXPx	-7.6		3.0	dBm	2,3
Transmit OMA per Lane	TxOMA	-5.3		3	dBm	2
Launch Power Tx OMA - TDP		-6.6			dBm	
Transmitter and Dispersion Penalty	TDP			4.9	dB	2
Optical Extinction Ratio	ER	3.0			dB	
Average launch power of OFF transmitter, per lane				-30	dBm	
Relative Intensity Noise	RIN			-128	dB/Hz	4
Optical Return Loss Tolerance		12			dB	
Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3}		0.23, 0.34, 0.43, 0.27, 0.35, 0.4				
Receive (each lane)						
Signaling Speed per Lane			10.3125		GBd	5
Lane center wavelengths			850 880 910 940		nm	
Average Receive Power per Lane	RXPx	-9.0		3.0	dBm	2,6
Receive Power (OMA) per Lane	RxOMA			3	dBm	2
Receiver Sensitivity (OMA) per Lane	Rxsens			-9.1	dBm	2,7
Stressed Receiver Sensitivity (OMA) per Lane @ 850nm	SRS			-5.7	dBm	2
Stressed Receiver Sensitivity (OMA) per Lane @ 880nm, 910nm, 940nm	SRS			-4.4	dBm	2
Return Loss	RL			12	dB	
LOS De-Assert	LOSD			-13	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis		0.5			dB	


Notes:

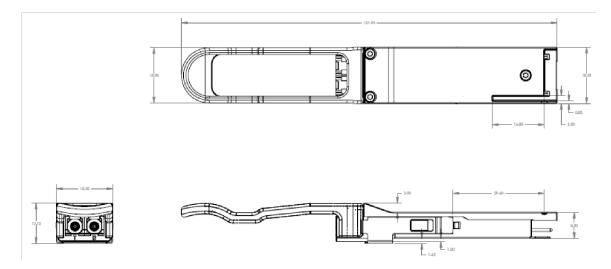
- 1. Transmitter consists of 4 lasers operating at 10.3Gb/s each.
- 2. This value varies among the 4 channels. The value shown is for the worst-case channel.
- 3. Minimum value is informative.
- 4. Maximum value is informative. TDP guarantees Tx performance
- 5. Receiver consists of 4 photodetectors operating at 10.3 Gb/s each.
- 6. Minimum value is informative, equals min TxOMA with infinite ER and max channel insertion loss.
- 7. Maximum value is informative based on a theoretical perfect unstressed optical source

Electrical Pin-out Details

Top Side Viewed from Top

Bottom Side Viewed from Bottom

Pin Descriptions


Pin	escriptions Logic	Symbol	Name/Descriptions	Ref.
riii	LOGIC	Syllibol	Name/Descriptions	Rei.
1		GND	Module Ground	1
2	CML-I	Tx2-	Transmitter inverted data input	
3	CML-I	Tx2+	Transmitter non-inverted data input	
4		GND	Module Ground	1
5	CML-I	Tx4-	Transmitter inverted data input	
6	CML-I	Tx4+	Transmitter non-inverted data input	
7		GND	Module Ground	1
8	LVTTL-I	MODSEIL	Module Select	2
9	LVTTL-I	ResetL	Module Reset	2
10		VCCRx	+3.3v Receiver Power Supply	
11	LVCMOS-I	SCL	2-wire Serial interface clock	2
12	LVCMOS-I/O	SDA	2-wire Serial interface data	2
13		GND	Module Ground	1
14	CML-O	RX3+	Receiver non-inverted data output	
15	CML-O	RX3-	Receiver inverted dta output	
16		GND	Module Ground	1
17	CML-O	RX1+	Receiver non-inverted data output	
18	CML-O	RX1-	Receiver inverted data output	
19		GND	Module Ground	1
20		GND	Module Ground	1
21	CML-O	RX2-	Receiver inverted data output	
22	CML-O	RX2+	Receiver non-inverted data output	
23		GND	Module Ground	1
24	CML-O	RX4-	Receiver inverted data output	
25	CML-O	RX4+	Receiver non-inverted data output	
26		GND	Module Ground	1
27	LVTTL-O	ModPrsL	Module Present, internal pulled down to GND	
28	LVTTL-O	IntL	Interrupt output, should be pulled up on host board	2
29		VCCTx	+3.3v Transmitter Power Supply	
30		VCC1	+3.3v Power Supply	
31	LVTTL-I	LPMode	Low Power Mode	2
32		GND	Module Ground	1
33	CML-I	Tx3+	Transmitter non-inverted data input	
34	CML-I	Tx3-	Transmitter inverted data input	
35		GND	Module Ground	1
36	CML-I	Tx1+	Transmitter non-inverted data input	
37	CML-I	Tx1-	Transmitter inverted data input	

Notes:

- 1. Module circuit ground is isolated from module chassis ground with in the module.
- 2. Open collector; should be pulled up with 4.7k-10k ohms on host board to a voltage between 3.15V and 3.6V.

Mechanical Specifications

The mechanical specifications are compliant to the QSFP+ MSA transceiver module specifications.

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

