

160-9203-900-OPC

Ciena® 160-9203-900 Compatible TAA OTU2/OC192/10GBase-LR Mult-Rate SFP+ Transceiver (SMF, 1310nm, 10km, LC, DOM)

Features

- Operating Data Rate up to 10.31Gbps
- 1310nm DFB-LD Transmitter
- Single 3.3V Power Supply and TTL Logic Interface
- Hot-Pluggable Duplex LC Connector Interface
- Power Dissipation:
- Operating Temperature 0 to 70 Celsius
- Compliant with MSA SFP+ Specification SFF-8431
- Compliant with IEEE802.3ae 10GBASE-LR/LW
- RoHS Compliant and Lead-Free

Applications:

- 10GBase-LR at 10.31Gbps
- 10GBase-LW at 9.95Gbps
- 8x/10x Fibre Channel
- Access, Datacenter and Enterprise
- Mohile Fronthaul CPRI/ORSAI

Product Description

This Ciena® 160-9203-900 compatible SFP+ transceiver provides OTU2/OC192/10GBase-LR throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Ciena® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. It is built to meet or exceed the specifications of Ciena®, as well as to comply with MSA (Multi-Source Agreement) standards to ensure seamless network integration. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Maximum Supply Voltage		-0.5		3.6	V
Storage Temperature	Tstg	-40		85	°C
Operating Case Temperature	Тс	0		70	°C
Operating Relative Humidity	RH			95	%
Baud Rate	10GBASE-LR		10.31		Gbps
	10GBASE-LW		9.95		Gbps

Notes:

1. Exceeding any one of these values may destroy the device immediately.

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Volt	tage	Vcc	3.15	3.30	3.45	V	
Power Supply Cur	Power Supply Current				300	mA	
Transmitter							
LVPECL Differential Inputs		VIN	150		1200	mVp-p	1
Input AC Common	-Mode Voltage		0		25	mV	RMS
Input Differential Impedance		ZIN	85	100	115	Ω	2
Differential Input	S-Parameter	SDD11			-10	dB	
Differential to Common-Mode Conversion		SCD11			-10	dB	
Tx_Disable Assert Time		t_off		10		us	
Tx_Disable Negate Time		t_on		1		ms	
Tx_Disable	High		2		Vcc	V	
	Low		0		0.8	V	
Tx_Fault	High		2		Vcc+0.3	V	3
	Low		0		0.8	V	4
Receiver							
CML Differential Outputs		VOUT	350		700	mVp-p	1
Output AC Common-Mode Voltage			0		15	mV	RMS
Output Differential Impedance		ZOUT	90	100	110	Ω	
Differential Output S-Parameter		SD22			-10	dB	
Rx_LOS	LOS	VOH	2		Vcc+0.3		
	Normal	VOL	0		0.8		

MOD_DEF (0.2)	VOH	2		V	With Serial ID
	VOL	0	0.5	V	With Serial ID

Notes:

- 1. AC Coupled. LVPECL Logic. Internally AC Coupled.
- 2. RIN>100kΩ @DC.
- 3. Io=400uA. Host_Vcc.
- 4. lo=-4.0mA.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
θμm Core Diameter SMF	L		10		km	
Data Rate		0.6	10.31		Gbps	
Transmitter						
Center Wavelength	λC	1270	1310	1355	nm	
Spectral Width (RMS)	Δλ			1	nm	
Average Output Power	POUT	-8.2		0.5	dBm	1
Extinction Ratio	ER	3.5			dB	
Average Power of Off Transmitter	Poff			-30	dBm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Fransmitter Dispersion Penalty	TDP			3.2	dB	
Tx_Disable Time to Start Reset	t_reset	10			us	
Time to Initialize (Includes Reset of Tx_Fault)	t_init			300	ms	
Tx_Fault from Fault to Assertion	t_fault			100	us	
Total Jitter	TJ			0.28	UI (p-p)	
Data-Dependent Jitter	DDJ			0.1	UI (p-p)	
Uncorrelated Jitter	UJ			0.023	RMS	
Receiver						
Center Wavelength	λC	1260		1600	nm	
Receiver Sensitivity	Pmin			-14.4	dBm	2
Receiver Overload	Pmax	0.5			dBm	
Return Loss	ORL			-12		
LOS De-Assert	LOSD			-16	dBm	
LOS Assert	LOSA	-28			dBm	
LOS Hysteresis	LOSH	0.5			dB	

Notes:

- 1. Output is coupled into a 9/125um SMF. The -4.7dBm is reference IEEE 802.3ae, the typical value is 1dBm.
- 2. Minimum average optical power measured at the BER less than 1E-12, back to back. The measure pattern is PRBS 231-1.

Pin Descriptions

Pin	Symbol	Name/Description	Notes
1	VeeT	Transmitter Ground (Common with Receiver Ground).	1
2	Tx_Fault	Transmitter Fault. LVTTL-O.	2
3	Tx_Disable	Transmitter Disable. Laser output disabled on "high" or "open." LVTT-I.	3
4	SDA	2-Wire Serial Interface Data (Same as MOD-DEF2 in INF-8074i). LVTTL-I/O.	
5	SCL	2-Wire Serial Interface Clock (Same as MOD-DEF2 in INF-8074i). LVTTL-I.	
6	MOD_ABS	Module Absent. Connect to the VeeT or VeeR in the module.	4
7	RS0	Rate Select 0. Not Used.	5
8	LOS	Loss of Signal Indication. "Logic 0" indicates normal operation. LVTTL-O.	2
9	RS1	Rate Select 1. Not Used.	5
10	VeeR	Receiver Ground (Common with Transmitter Ground).	1
11	VeeR	Receiver Ground (Common with Transmitter Ground).	1
12	RD-	Receiver Inverted Data Out. AC Coupled. CML-O.	
13	RD+	Receiver Non-Inverted Data Out. AC Coupled. CML-O.	
14	VeeR	Receiver Ground (Common with Transmitter Ground).	1
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	VeeT	Transmitter Ground (Common with Receiver Ground).	1
18	TD+	Transmitter Non-Inverted Data In. AC Coupled. CML-I.	
19	TD-	Transmitter Inverted Data In. AC Coupled. CML-O.	
20	VeeT	Transmitter Ground (Common with Receiver Ground).	1

Notes:

- 1. The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
- 2. This contact is an open collector/drain output and should be pulled up to the Host_Vcc with resistor in the range $4.7k\Omega$ to $10k\Omega$. Pull-ups can be connected to one or several power supplies; however, the host board design shall ensure that no module contact has voltage exceeding module VccT/R+0.5V.
- 3. Tx_Disable is an input contact with a $4.7k\Omega$ to $10k\Omega$ pull-up resistor to the VccT inside the module.
- 4. MOD_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull the contact up to Host_Vcc with a resistor in the range from $4.7k\Omega$ to $10k\Omega$. MOD_ABS is asserted "high" when the SFP+

module is physically absent from a host slot.

5. Internally pulled down per SFF-8431.

Pin-Out of Connector Block on the Host Board

Recommended Circuit Schematic

Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

