

QSFP28-100GB-SR4-40M-MX-OPC

Mellanox® Compatible TAA 100GBase-SR4 QSFP28 Transceiver (MMF, 850nm, 40m w/Reduced FEC, MPO, DOM)

Features

- Compliant with IEEE Std 802.3bm, 100G BASE SR4 Ethernet
- Compliant with QSFP28 MSA
- Management interface specifications per SFF-8636
- Single MPO connector receptacle
- 4 channels 850nm VCSEL array
- 4 channels PIN photo detector array
- Up to 103.1Gb/s data rates
- Class 1 laser safety certified
- Commercial Temperature: 0 to 70 Celsius
- RoHS Compliant and Lead-Free

Applications:

- 100GBase Ethernet
- Access and Enterprise

Product Description

This Mellanox® compatible QSFP28 transceiver provides 100GBase-SR4 throughput up to 40m w/reduced FEC over OM4 multi-mode fiber (MMF) using a wavelength of 850nm via an MPO connector. It can operate at temperatures between 0 and 70C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Mellanox®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	-0.5		4	V	
Storage Temperature	Tstg	-40		85	°C	
Case Operating Temperature	Тс	0	25	70	°C	
Relative Humidity	RH	5		95	%	
Data Rate	BR		25.78125		Gbps	
Transmission Distance	TD			40	m	1
Transmission Distance	TD			100	m	2

Notes:

- 1. On OM4 MMF without host FEC. Or up to 30m on OM3 MMF without host FEC.
- 2. On OM4 MMF with host Clause 91 (RS) FEC. Or up to 70m on OM3 MMF with host Clause 91 (RS) FEC.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Power Supply Current	Icc			750	mA	
Power Dissipation	P _D			2.5	W	
Transmitter						
Input Differential Impedance	ZIN		100		Ω	
Differential Data Input Swing	V _{IN, P-P}	180		900	mV _{P-P}	
Receiver						
Output Differential Impedance	ZO		100		Ω	
Differential Data Output Swing	V _{OUT, P-P}	300		850	mV _{P-P}	1
Transition Time (20% to 80%)	Tr,Tf	12			ps	

Notes:

1. Internally AC coupled but requires an external 100Ω differential load termination.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter							
Center Wavelength	λC	840	850	860	nm		
Optical Launch Power	Ро	-4.5		+2.4	dBm	1	
Transmit OMA per Lane	OMA	-4.5		+3	dBm		
Extinction Ratio	EX	2			dB	2	
Spectral Width (RMS)	Δλ			0.6	nm		
TDEC per Lane	TDEC			4.3	dB		
Optical Return Loss Tolerance	ORLT			12	dB		
Eye Diagram	IEEE Std 802.3bm compatible						
Receiver	Receiver						
Receiver Wavelength	λ	840	850	860	nm		
Average Receiver Sensitivity (Pavg)	S			-7	dBm	3	
Receiver Overload (Pavg)	POL	2.4			dBm		
Damage Threshold	POL	3.4			dBm		
Optical Reflectance	ORL			-12	dB		
LOS De-Assert	LOSD			-11	dBm		
LOS Assert	LOSA	-30			dBm		
LOS Hysteresis		0.5		5	dB		

Notes:

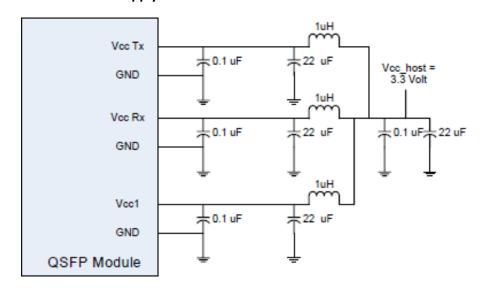
- 1. The optical power is launched into OM3 MMF.
- 2. Measured with a PRBS 2³¹-1 test pattern @25.78125Gbps.
- 3. Measured with PRBS 2³¹-1 test pattern, 25.78125Gb/s, BER<1E-12.

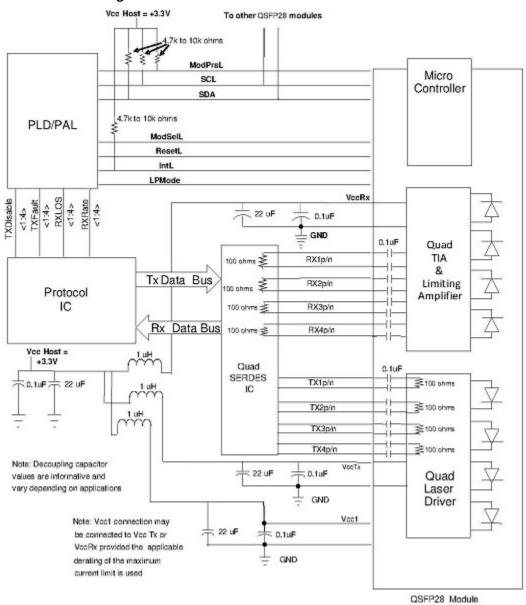
Pin Descriptions

Pin	Logic	Symbol	Name/Descriptions	Ref.
1		GND	Transmitter Ground. (Common with Receiver Ground.)	1
2	CML-I	Tx2-	Transmitter Inverted Data Input.	
3	CML-I	Tx2+	Transmitter Non-Inverted Data Input.	
4		GND	Transmitter Ground. (Common with Receiver Ground.)	1
5	CML-I	Tx4-	Transmitter Inverted Data Input.	
6	CML-I	Tx4+	Transmitter Non-Inverted Data Input.	
7		GND	Transmitter Ground. (Common with Receiver Ground.)	1
8	LVTTL-I	MODSEIL	Module Select.	2
9	LVTTL-I	ResetL	Module Reset.	2
10		VccRx	+3.3V Receiver Power Supply.	
11	LVCMOS-I	SCL	2-Wire Serial Interface Clock.	2
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	2
13		GND	Transmitter Ground. (Common with Receiver Ground.)	1
14	CML-O	Rx3+	Receiver Non-Inverted Data Output.	
15	CML-O	Rx3-	Receiver Inverted Data Output.	
16		GND	Transmitter Ground. (Common with Receiver Ground.)	1
17	CML-O	Rx1+	Receiver Non-Inverted Data Output	
18	CML-O	Rx1-	Receiver Inverted Data Output.	
19		GND	Transmitter Ground. (Common with Receiver Ground.)	1
20		GND	Transmitter Ground. (Common with Receiver Ground.)	1
21	CML-O	Rx2-	Receiver Inverted Data Output.	
22	CML-O	Rx2+	Receiver Non-Inverted Data Output.	
23		GND	Transmitter Ground. (Common with Receiver Ground.)	1
24	CML-O	Rx4-	Receiver Inverted Data Output.	
25	CML-O	Rx4+	Receiver Non-Inverted Data Output.	
26		GND	Transmitter Ground. (Common with Receiver Ground.)	1
27	LVTTL-O	ModPrsL	Module Present. Internally pulled down to GND.	
28	LVTTL-O	IntL	Interrupt output should be pulled up on the host board.	2
29		VccTx	+3.3V Transmitter Power Supply.	
30		Vcc1	+3.3V Power Supply.	
31	LVTTL-I	LPMode	Low-Power Mode.	2
32		GND	Transmitter Ground. (Common with Receiver Ground.)	1
33	CML-I	Tx3+	Transmitter Non-Inverted Data Input.	
34	CML-I	Tx3-	Transmitter Inverted Data Input.	
35		GND	Transmitter Ground. (Common with Receiver Ground.)	1
36	CML-I	Tx1+	Transmitter Non-Inverted Data Input.	
37	CML-I	Tx1-	Transmitter Inverted Data Input.	
38		GND	Transmitter Ground. (Common with Receiver Ground.)	1

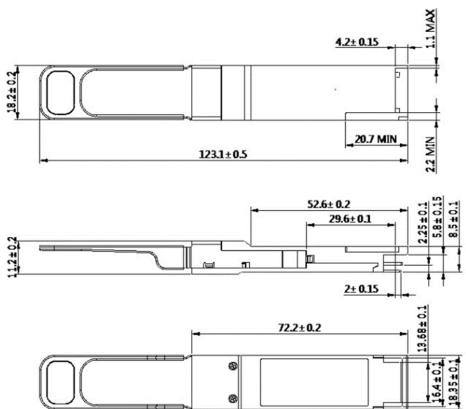
Notes:

- 1. The module signal grounds are isolated from the module case.
- 2. This is open collector/drain output that on the host board requires a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to VccHost.


Electrical Pin-Out Details


Viewed from Top

Viewed from Bottom


Recommended Host Board Power Supply Filter Network

Transceiver Interface Block Diagram

Mechanical Specifications

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

