

SFP-1/10GB-SR-MX-OPC

Mellanox® Compatible TAA 1/10GBase-SR SFP+ Dual-Rate Transceiver (MMF, 850nm, 300m, LC, DOM)

Features

- Supports Rate Selectable 1.25Gbps or 9.83Gbps to 11.3Gbps Bit Rates
- Compliant with IEEE 802.3-2012 10GBASE-SR/SW and 1000BASE-SX
- Compliant with SFF-8431
- Hot-Pluggable SFP+ Footprint
- 850nm VCSEL Laser Transmitter
- Duplex LC Connector
- Built-In Digital Diagnostic Functions
- Class 1 Laser
- Operating Temperature: 0 to 70 Celsius
- RoHS Compliant and Lead-Free

Applications:

• 10GBase Ethernet

Product Description

This Mellanox® compatible SFP+ transceiver provides 1/10GBase-SR throughput up to 300m over multi-mode fiber (MMF) using a wavelength of 850nm via an LC connector. It can operate at temperatures between 0 and 70C. All of our transceivers are built to comply with Multi-Source Agreement (MSA) standards and are uniquely serialized and tested for data-traffic and application to ensure seamless network integration. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5		4	V	1
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Data Rate (RS0 = Low)	DR		1.25		Gbps	2
Data Rate (RSO = High)	DR	9.83	10.3125	11.3	Gbps	2
Bit Error Rate	BER			10 ⁻¹²		

Notes:

- 1. For the electrical power interface.
- 2. IEEE 802.3-2012.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Module Supply Voltage	Vcc	3.14	3.3	3.46	V	
Module Supply Current	Icc		180	300	mA	1
Transmitter						
Input Differential Impedance	RIN		100		Ω	
Differential Data Input Swing	VIN,pp	180		700	mVp-p	
Transmit Disable Voltage	VD	2		Host_Vcc	V	
Transmit Enable Voltage	VEN	Vee		Vee+0.8	V	
Receiver						
Differential Data Output Swing	VOUT,pp	300		850	mVp-p	
Data Output Rise/Fall Time (20-80%)	Tr/Tf	28			ps	
LOS Assert	VLOSA	2		Host_Vcc	V	
LOS De-Assert	VLOSD	Vee		Vee+0.5	V	

Notes:

1. For the electrical power interface.

Optical Characteristics RS0 = Low (1G Operation)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Output Optical Power	PTX	-9.5		-1	dBm	1
Optical Center Wavelength	λC	840	850	860	nm	
Rise/Fall Time (20-80%)	Tr/Tf			300	ps	
Extinction Ratio	ER	9			dB	
Spectral Width (RMS)	Δλ			0.45	nm	
Relative Intensity Noise	RIN			-120	dB/Hz	
Transmitter Jitter	TJ					2
Launch Power of Off Transmitter	Poff			-30	dBm	3
Receiver						
Optical Center Wavelength	λC	840		860	nm	
Receiver Sensitivity @1.25Gbps	RX_SEN			-17	dBm	4
Receiver Overload	POL	0.5			dBm	
Optical Return Loss	ORL	12			dB	
LOS Assert	LOSA	-30			dBm	
LOS De-Assert	LOSD			-18	dBm	
LOS Hysteresis	LOSH	0.5			dB	

Notes:

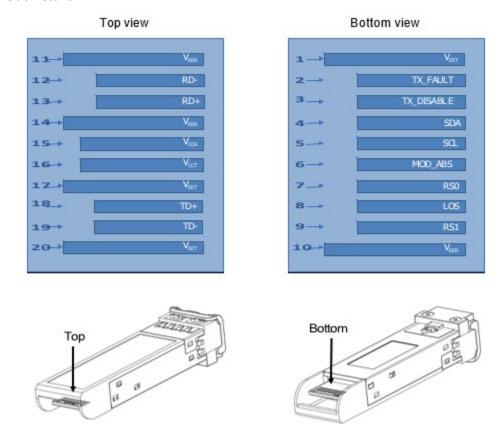
- 1. Class 1 Product.
- 2. According to IEEE 802.3-2012 requirements.
- 3. Average
- 4. Measured with worst ER, BER<10⁻¹², and 2⁷-1 PRBS.

Optical Characteristics RS0 = High (10G Operation)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Output Optical Power	PTX	-5		-1	dBm	1
Optical Center Wavelength	λC	840	850	860	nm	
Optical Modulation Amplitude	OMA		-1.5		dBm	2
Extinction Ratio	ER	3	5.5		dB	
Spectral Width (RMS)	Δλ			0.45	nm	
Relative Intensity Noise	RIN			-128	dB/Hz	
Transmitter Dispersion Penalty	TDP			3.9	dB	
Transmitter Jitter	TJ					3
Launch Power of Off Transmitter	Poff			-30	dBm	4
Receiver						
Optical Center Wavelength	λC	840		860	nm	
Receiver Sensitivity @10.3Gbps	RX_SEN			-10	dBm	1
Receiver Overload	POL	0.5			dBm	
Receiver Reflectance	TR _{RX}			-12	dB	
LOS Assert	LOSA	-30			dBm	
LOS De-Assert	LOSD			-14	dBm	
LOS Hysteresis	LOSH	0.5			dB	

Notes:

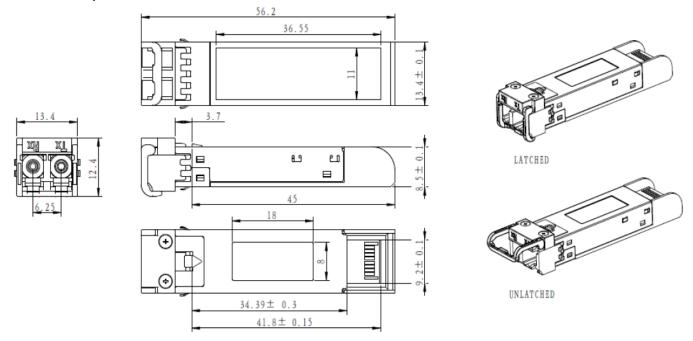
- 1. Class 1 Product.
- 2. IEEE 802.3-2012.
- 3. According to IEEE 802.3-2012 requirements.
- 4. Average.
- 5. Measured with worst ER, BER<10 $^{-12}$, and 2 31 -1 PRBS.


Pin Descriptions

Pin	Symbol	Name/Description	Notes
1	VeeT	Transmitter Ground (Common with Receiver Ground).	1
2	Tx_Fault	Transmitter Fault.	
3	Tx_Disable	Transmitter Disable. Laser output disables on "high" or "open."	2
4	SDA	2-Wire Serial Interface Data.	3
5	SCL	2-Wire Serial Interface Clock.	3
6	MOD_ABS	Module Absent. Grounded within the module.	3
7	RS0	Rate Selection.	
8	LOS	Loss of Signal Indication. "Logic 0" indicates normal operation.	4
9	RS1	No Connection Required.	1
10	VeeR	Receiver Ground (Common with Transmitter Ground).	1
11	VeeR	Receiver Ground (Common with Transmitter Ground).	1
12	RD-	Inverse Receiver Data Out. AC Coupled.	
13	RD+	Received Data Out. AC Coupled.	
14	VeeR	Receiver Ground (Common with Transmitter Ground).	1
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	VeeT	Transmitter Ground (Common with Receiver Ground).	1
18	TD+	Transmitter Data In. AC Coupled.	
19	TD-	Inverse Transmitter Data In. AC Coupled.	
20	VeeT	Transmitter Ground (Common with Receiver Ground).	1

Notes:

- 1. The circuit ground is isolated from the chassis ground.
- 2. Disabled: T_{DIS}>2V or open. Enabled: T_{DIS}<0.8V.
- 3. Should be pulled up with $4.7k\Omega$ to $10k\Omega$ on the host board to a voltage between 2V and Vcc+0.3V.
- 4. LOS is an open collector output.


Electrical Pin-Out Details

Block Diagram

Mechanical Specifications

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

