

SFP-25GB-DW-C-15-I-EN-OPC

LG-Ericsson® Compatible TAA 10/25GBase-DWDM SFP28 Transceiver Dual-Rate 100GHz (SMF, Tunable, 15km, LC, DOM, -40 to 85C)

Features

- SFF-8402 and SFF-8690 Compliant
- Duplex LC Connector
- 100GHz Channel Spacing
- Supports 9.8Gb/s to 25.78Gb/s
- Industrial Temperature -40 to 85 Celsius
- Single-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

Applications:

- 25GBase
- Access, Metro and Enterprise

Product Description

This LG-Ericsson® compatible dual-rate SFP28 transceiver provides 10/25GBase-DWDM throughput up to 15km over single-mode fiber (SMF) using a tunable wavelength via an LC connector. It is capable of withstanding rugged environments and can operate at temperatures between -40 and 85C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with LG-Ericsson®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4.
- ESD to the LC Receptacle: compatible with IEC 61000-4-3.
- EMI/EMC: compatible with FCC Part 15 Subpart B Rules, EN55022:2010.
- Laser Eye Safety: compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1, 2.
- RoHS: compliant with EU RoHS 2.0 directive 2015/863/EU.

DWDM Wavelength ITU Channels - 100 GHz Spacing

ITU Channel	Center Wavelength (nm)	Frequency (THz)	ITU Channel	Center Wavelength (nm)	Frequency (THz)
14	1566.31	191.4	38	1546.92	193.8
15	1565.50	191.5	39	1546.12	193.9
16	1564.68	191.6	40	1545.32	194.0
17	1563.86	191.7	41	1544.53	194.1
18	1563.05	191.8	42	1543.73	194.2
19	1562.23	191.9	43	1542.94	194.3
20	1561.42	192.0	44	1542.14	194.4
21	1560.61	192.1	45	1541.35	194.5
22	1559.79	192.2	46	1540.56	194.6
23	1558.98	192.3	47	1539.77	194.7
24	1558.17	192.4	48	1538.98	194.8
25	1557.36	192.5	49	1538.19	194.9
26	1556.55	192.6	50	1537.4	195.0
27	1555.75	192.7	51	1536.61	195.1
28	1554.94	192.8	52	1535.82	195.2
29	1554.13	192.9	53	1535.04	195.3
30	1553.33	193.0	54	1534.25	195.4
31	1552.52	193.1	55	1533.47	195.5
32	1551.72	193.2	56	1532.68	195.6
33	1550.92	193.3	57	1531.9	195.7
34	1550.12	193.4	58	1531.12	195.8
35	1549.32	193.5	59	1530.33	195.9
36	1548.51	193.6	60	1529.55	196.0
37	1547.72	193.7	61	1528.77	196.1

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	0		4	V	
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	-40		85	°C	
Ambient Humidity	RH	5		95	%	w/o dew
Data Rate	DR ₂₅	24.3		25.78	Gbps	
	DR ₁₀	9.8	10.3	12.5	Gbps	
Receiver Damage Threshold	THd	3			dBm	

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage		Vcc	+3.135	+3.3	+3.465	V	
Power Dissipation	1	P _{DISS}			2.5	W	1
Power Supply Noi	se Tolerance	PSNT			66	mVp-p	2
Transmitter							
Data Rate		DR ₂₅	24.3		25.78	Gbps	RS1 High Logic
		DR ₁₀	9.8	10.3	12.5	Gbps	RS1 Low Logic
Differential Input	Voltage	VIN	190		700	mV	AC Coupled
Differential Input	Impedance	ZIN	90	100	110	Ω	
Tx_Disable	Input_Low	VIL	-0.3		0.8	V	3
	Input_High	VIH	2.0		Vcc+0.3	V	3
	Assert Time	tOFF			100	us	High
	Negate Time	tON			2.0	ms	Low
Tx_Disable to Star	t Reset	tReset	10			us	High
Time to Initialize		tlnit			90	S	4
Tx_Fault	Output_Low	VFOL	-0.3		0.4	V	LVTTL - Low is
	Output_High	IFOH	-50		37.5	uA	Normal
RS1 (Rate Select fo	or Tx)	VIL	-0.3		0.8	V	Internally
		VIH	2.0		Vcc+0.3	V	pulled down
Receiver							
Data Rate		DR ₂₅	24.3		25.78	Gbps	RSO High Logic
		DR ₁₀	9.8	10.3	12.5	Gbps	RSO Low Logic
Differential Output Voltage		VOUT	300		850	mV	AC Coupled
Differential Outpu	ıt Impedance	ZOUT	90	100	110	Ω	

Rx_LOS (Loss of Signal)	Output_Low	V _{LOSL}	-0.3	0.4	V	LVTTL - Low is
(LO33 Of Signal)	Output_High	I _{LOSH}	-50	37.5	uA	Normal
	Assert Time	t _{LOS-ON}		100	us	High@S
	De-Assert Time	t _{LOS-OFF}		100	us	Low@S
RSO (Rate Select for Rx)		VIL	-0.3	0.8	V	Internally
		VIH	2	Vcc+0.3	V	pulled down

Notes:

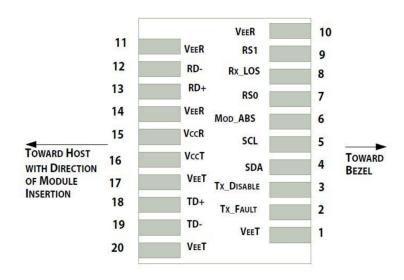
- 1. Conditions: @3.3V and -40°C to 85°C.
- 2. From 10Hz to 10MHz.
- 3. LVTTL "Low" at normal operation and "High" at shutdown (Poff).
- 4. Including reset of Tx_Fault.

Optical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter							
Average Laund	ch Power	Pavg	-1.0		+3.0	dBm	
Optical Power	Flatness	ΔΡΟ	-1.0		+1.0	dB	All Channels
Transmitter D	isabled Power	Poff			-30	dBm	@Tx_Disable is High
Optical Center	r Wavelength	λC	1528.77		1566.31	nm	1
Optical Center	r Frequency		191.40		196.10	THz	1
Center Wavelength Spacing			100			GHz	1
Wavelength Stability	Beginning of Life	λ _{p_BOL}	-1.7	λС	+1.7	GHz	2
	End of Life	λ _{p_EOL}	-2.5	λC	+2.5	GHz	2
Wavelength T	uning Speed	T _{TUNE}			30	ms	3
Spectral Widtl	h	σ			0.5	nm	@-20dB
Side-Mode Su	ppression Ratio	SMSR	30			dB	
Extinction Rat	io	ER	8.0			dB	PRBS 2 ³¹ -1
Relative Inten	sity Noise	RIN ₂₀ OMA			-130.0	dB/Hz	
Optical Return Loss Tolerance		ORLT			20.0	dB	
Transmitter Reflectance					-26.0	dB	
Optical Eye Mask			IEEE 802.3cc 114.6 25GBASE- LR/ER {X1, X2, X3, Y1, Y2, Y3} = {0.31, 0.40, 0.45, 0.34, 0.38, 0.40}				Hit ratio 5E ⁻⁵

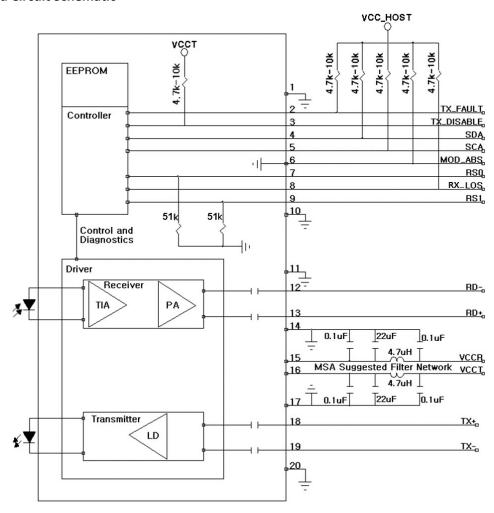
Receiver							
Optical Sensitivity	25.78Gbps or 24.33Gbps	S1			-19.0		4
	10.7Gbps, 10.3Gbps, 9.8Gbps	S2			-19.0		5
	11.3 - 11.1Gbps	S3			-19.0		6
Optical Overload			-4.0			dBm	7
Operating Wavelength		λ	1525		1575	nm	
Rx_LOS (Loss of	Assert	LOSA	-30.0			dBm	Rx Squelch Activated
Signal)	De-Assert	LOSD			-23.0	dBm	
	Hysteresis	LOSH	0.5		5.0	dB	
Return Loss o	of Receiver				-26.0	dB	
Auxiliary Ma	nagement and Control Ch	annel					
Bit Rate		BR _{AMCC}		1200		bps	
Modulation Depth		AMCC _{MD}	5		10	%	
Dynamic Range		DR _{AMCC}	-4		-24	dBm	8

Notes:

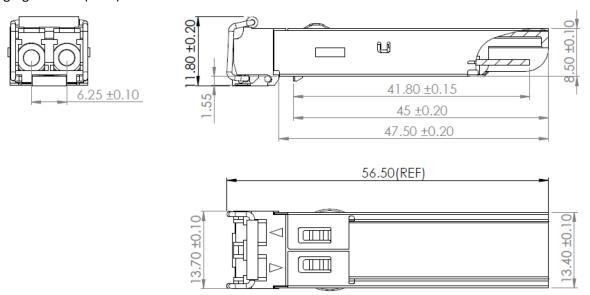

- 1. ITU-T 694.1 Grid Wavelength.
- 2. $\lambda C = ITU$ Grid Wavelength.
- 3. From any CH to any other CH. ASP Disable.
- 4. PRBS 2³¹, BER 5x10⁻⁵, Source ER=8.0dB, SMF 15km, G.652.
- 5. PRBS 2³¹, BER 5x10⁻¹², Source ER=8.0dB, SMF 15km, G.652.
- 6. PRBS 2³¹, BER 1x10⁻⁴, Source ER=8.0dB, SMF 15km, G.652.
- 7. PRBS 2³¹, Source ER=8.0dB.
- 8. AMCC_{MD}: 5%, 1200bps.

Pin Descriptions

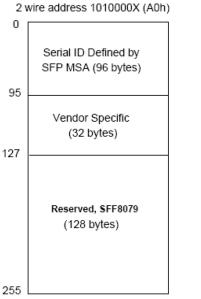
Pin	Symbol	Name	Ref.
1	VeeT	Transmitter Ground.	1
2	Tx_Fault	Transmitter Fault Indication.	
3	Tx_Disable	Disables the transmitter or laser output.	2
4	SDA	2-Wire Serial Interface Data.	2
5	SCL	2-Wire Serial Interface Clock.	2
6	Mod_ABS	Indicates the module online state. This pin is connected to the VeeT or VeeR pin.	
7	RS0	Selects a rate for the module. This pin is connected to the $33k\Omega$ resistor.	
8	LOS	Indicates a loss of received signals.	2
9	RS1	Selects a rate for the module. This pin is connected to the $33k\Omega$ resistor.	
10	VeeR	Receiver Ground.	1
11	VeeR	Receiver Ground 1.	1
12	RD-	Inverse Received Data Output.	
13	RD+	Received Data Output.	
14	VeeR	Receiver Ground.	1
15	VccR	+3.3V Receiver Power.	1
16	VccT	+3.3V Transmitter Power.	1
17	VeeT	Transmitter Ground.	1
18	TD+	Transmit Data Input.	
19	TD-	Inverse Transmit Data Input.	
20	VeeT	Transmitter Ground.	1

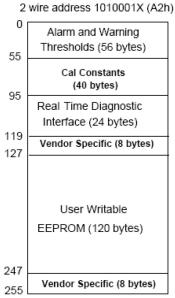

Notes:

- 1. The ground of the module (operating module ground) and that of the module shell are separate from each other.
- 2. $4.7k\Omega-10k\Omega$ resistor is used on the module to pull the output up to 3.15-3.45V.


Pin-Out of Connector Block on the Host Board

Recommended Circuit Schematic


Mechanical Specifications


Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

EEPROM Information

EEPROM memory map-specific data field description is as below:

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

