

1061003030-LC-AO

ADVA® 1061003030 Compatible TAA Compliant 1000Base-BX SFP Transceiver (SMF, 1490nmTX/1550nmRX, 120km, LC, DOM)

Features

- Operating Data Rate up to 1.25Gbps
- Single 3.3V Power Supply
- 120km with 9/125μm SMF
- Compliant with SFF-8472
- Compliant with MSA SFP Specifications
- Hot-Pluggable SFP
- Operating Temperature: 0 to 70 Celsius
- Class 1 Laser Safety Compliant
- RoHS Compliant and Lead-Free

Applications

- 1000Base-BX Ethernet
- Access and Enterprise

Product Description

This ADVA® 1061003030 compatible SFP transceiver provides 100/1000Base-BX throughput up to 120km over single-mode fiber (SMF) using a wavelength of 1510nmTx/1590nmRx via an LC connector. This bidirectional unit must be used with another transceiver or network appliance of complementing wavelengths. It is guaranteed to be 100% compatible with the equivalent ADVA® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Data Rate				1.25	Gbps	
Operating Case Temperature	Тс	0		70	°C	
Storage Temperature	Tstg	-40		+85	°C	
Power Supply Voltage	Vcc	-0.5		3.6	V	
Relative Humidity (Non-Condensing)	RH	5		85	%	
9μm Core Diameter SMF	L			120	km	

Notes:

1. Exceeding any one of these values may destroy the device permanently.

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes			
Supply Voltage		Vcc	3.13	3.3	3.47	V				
Supply Current		Icc			300	mA				
Transmitter										
CML Differential Inputs		VIN	400		1800	mVp-p	1			
Input AC Common	Input AC Common-Mode Voltage		0		25	mV	2			
Input Differential	Input Differential Impedance ZIN		90	100	110	Ω	3			
	High		2		Vcc+0.3	V				
Tx_Disable	Low		0		0.8					
	High		2		Vcc+0.3	V	4			
Tx_Fault	Low		0		0.8		5			
Receiver	Receiver									
CML Differential C	Outputs	VOUT	400		2000	mVp-p	6			
Output Differentia	ferential Impedance ZOUT 90 100 110 Ω		Ω							
Rx_LOS	High		2		Vcc+0.3		4			
	Low		0		0.8	1	5			
MOD_DEF (0.2)		VOH	2.5		Vcc+0.3	V	7			
		VOL	0		0.5					

Notes:

- 1. AC coupled inputs.
- 2. RMS.
- 3. RIN > $100k\Omega$ @DC.
- 4. lo = 400μ A; Host_Vcc.
- 5. lo = -4.0 mA.
- 6. AC coupled outputs.
- 7. With serial ID.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter							
Center Wavelength	λС	1490	1510	1530	nm		
Spectral Width (-20dB)	Δλ			1	nm		
Side-Mode Suppression Ratio	SMSR	30			dB		
Average Output Power	POUT	0		5	dBm	1	
Extinction Ratio	ER	9			dB		
Rise/Fall Time (20-80%)	Tr/Tf			0.26	ns		
POUT @Tx_Disable Asserted	POUT			-45	dBm		
Output Optical Eye		Compliant with IEEE 802.3					
Receiver							
Center Wavelength	λС	1570	1590	1610	nm		
Receiver Sensitivity	Pmin			-31	dBm	2	
Receiver Overload	Pmax	-6			dBm		
LOS De-Assert	LOSD			-32	dBm		
LOS Assert	LOSA	-45			dBm		
LOS Hysteresis	LOSH	0.5			dB		

Notes:

- 1. Output is coupled into a 9/125μm SMF.
- 2. Minimum average optical power, measured at BER less than $1E^{-12}$, and the measure pattern is PRBS 2^7 -1.

Pin Descriptions

Pin	Symbol	Name/Description	Plug Seq.	Notes
1	VeeT	Transmitter Ground.	1	5
2	Tx_Fault	Transmitter Fault Indication.	3	1
3	Tx_Disable	Transmitter Disable. Module disables on "high" or "open."	3	2
4	MOD_DEF2	Module Definition 2. 2-Wire Serial ID Interface.	3	3
5	MOD_DEF1	Module Definition 1. 2-Wire Serial ID Interface.	3	3
6	MOD_DEF0	Module Definition 0. Grounded within the module.	3	3
7	Rate Select	Not Connected. Function not available.	3	
8	LOS	Loss of Signal.	3	4
9	VeeR	Receiver Ground.	1	5
10	VeeR	Receiver Ground.	1	5
11	VeeR	Receiver Ground.	1	5
12	RD-	Inverted Received Data Out.	3	6
13	RD+	Received Data Out.	3	7
14	VeeR	Receiver Ground.	1	5
15	VccR	3.3 ± 5% Receiver Power.	2	7
16	VccT	3.3 ± 5% Transmitter Power.	2	7
17	VeeT	Transmitter Ground.	1	5
18	TD+	Transmit Data In.	3	8
19	TD-	Inverted Transmit Data In.	3	8
20	VeeT	Transmitter Ground.	1	5

Notes:

- 1. Tx_Fault is an open collector/drain output that should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board. When "high," the output indicates a laser fault of some kind. "Low" indicates normal operation. In the "low" state, the output will be pulled to <0.8V.
- 2. Tx_Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\Omega$ to $10k\Omega$ resistor. Its states are:

Low (0V – 0.8V): Transmitter On

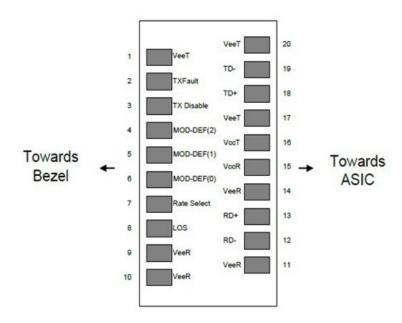
(>0.8V, <2.0V): Undefined

High (2.0V – 3.465V): Transmitter Disabled

Open: Transmitter Disabled.

3. MOD_DEF0, 1, & 2. These are module definition pins. They should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

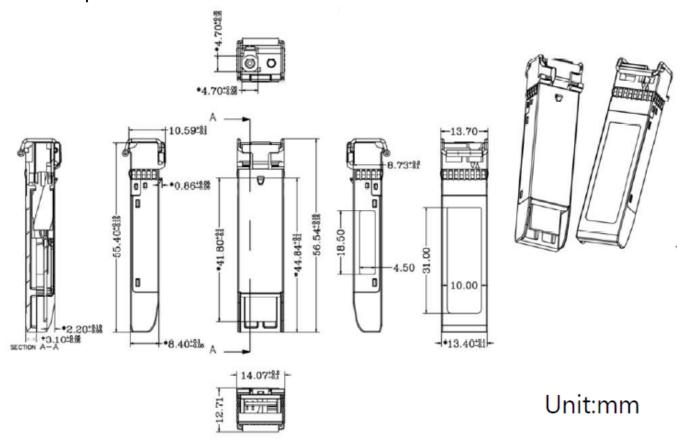
MOD_DEFO is grounded by the module to indicate that the module is present.


MOD_DEF1 is the clock line of 2-wire serial interface for serial ID.

MOD_DEF2 is the data line of 2-wire serial interface for serial ID.


- 4. LOS (Loss of Signal) is an open collector/drain output that should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor. When "high," this output indicates that the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). "Low" indicates normal operation. In the "low" state, the output will be pulled to <0.8V.
- 5. VeeR and VeeT may be internally connected within the SFP module.
- 6. RD-/+. These are the differential receiver outputs. They are AC-coupled, 100Ω differential lines that

- should be terminated with 100Ω (differential) at the user SERDES.
- 7. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP connector pin.
- 8. TD-/+. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential terminations inside the module.


Pin-Out Details

Recommended Circuit Schematic

Mechanical Specifications

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070