

QSFP-40GBASE-LR4-20-HP-OPC

HP® Compatible TAA 40GBase-LR4 QSFP+ Transceiver (SMF, 1270-1330nm, 20km, LC, DOM)

Features

- Compliant with IEEE Std 802.3ba, 40G Ethernet LR4
- Compliant with QSFP+ MSA
- Management Interface Specifications Per SFF-8436
- 4 CWDM-Lane Mux/Demux Design
- 4 Channels CWDM DFB
- 4 Channels PIN Photo Detector
- Up to 11.1Gbps Per Channel Data Links
- Class 1 Laser Safety Certified
- Operating Temperature: 0 to 70 Celsius
- Up to 20KM on SMF
- RoHS Compliant and Lead-Free

Applications:

• 40GBase Ethernet

Product Description

This HP® compatible QSFP+ transceiver provides 40GBase-LR4 throughput up to 20km over single-mode fiber (SMF) using a wavelength of 1270nm to 1330nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent HP® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5		4.0	V
Storage Temperature	Tstg	-40		+85	°C
Operating Case Temperature	Тс	0	25	70	°C
Relative Humidity	RH	5		95	%
Data Rate Per Channel			10.3125		Gbps

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Module Supply Current	Icc			1100	mA		
Power Dissipation	P _{DISS}			3500	mW		
Transmitter							
Input Differential Impedance	ZIN		100		Ω		
Differential Data Input Swing	VIN,pp	180		900	mVp-p		
Receiver							
Output Differential Impedance				900	Ω		
Differential Data Output Swing	ZOUT,pp	300		850	mVp-p	1	
Data Output Rise/Fall Time	T _r /T _f	28			ps	2	

Notes:

- 1. Internally AC coupled but requires an external 100Ω differential load termination.
- 2. 20-80%.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Launch Optical Power Per lane	Ро	-3		+2.3	dBm	1
Total Launch Optical Power	Ро			+8	dBm	1
Center Wavelength	λ0	1264.5	1271	1277.5	nm	
	λ1	1284.5	1291	1297.5	nm	
	λ2	1304.5	1311	1317.5	nm	
	λ3	1324.5	1331	1337.5	nm	
Extinction Ratio	ER	3.5			dB	2
Spectral Width (-20dB)	Δλ			1	nm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Transmitter and Dispersion Penalty	TDP			2.3	dB	
Optical Return Loss Tolerance	ORLT			12	dB	
Eye Diagram	IEEE Std 802.3ba Compatible					
Receiver						
Center Wavelength	λC	1260		1340	nm	
Receiver Sensitivity (OMA)	S			-11.5	dBm	3
Damage Threshold	POL	3.3			dBm	3
Optical Return Loss	ORL	26			dB	
LOS De-Assert	LOSD			-12	dBm	
LOS Assert	LOSA	-30			dB	
LOS Hysteresis		0.5			dB	

Notes:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2³¹-1 test pattern @10.3125Gbps.
- 3. Measured with a PRBS 2^{31} -1 test pattern, @10.3125 Gbps, and BER <10⁻¹².

Pin Descriptions

Pin Descriptions							
Pin	Symbol	Name/Description	Notes				
1	GND	Transmitter Ground (Common with Receiver Ground).	1				
2	Tx2-	Transmitter Inverted Data Input.					
3	Tx2+	Transmitter Non-Inverted Data Output.					
4	GND	Transmitter Ground (Common with Receiver Ground).	1				
5	Tx4-	Transmitter Inverted Data Input.					
6	Tx4+	Transmitter Non-Inverted Data Output.					
7	GND	Transmitter Ground (Common with Receiver Ground).	1				
8	ModSelL	Module Select.	2				
9	ResetL	Module Reset.	2				
10	VccRx	+3.3V Receiver Power Supply.					
11	SCL	2-Wire Serial Interface Clock.	2				
12	SDA	2-Wire Serial Interface Data.	2				
13	GND	Transmitter Ground (Common with Receiver Ground).	1				
14	Rx3+	Receiver Non-Inverted Data Output.					
15	Rx3-	Receiver Inverted Data Output.					
16	GND	Transmitter Ground (Common with Receiver Ground).	1				
17	Rx1+	Receiver Non-Inverted Data Output.					
18	Rx1-	Receiver Inverted Data Output.					
19	GND	Transmitter Ground (Common with Receiver Ground).	1				
20	GND	Transmitter Ground (Common with Receiver Ground).	1				
21	Rx2-	Receiver Inverted Data Output.					
22	Rx2+	Receiver Non-Inverted Data Output.					
23	GND	Transmitter Ground (Common with Receiver Ground).	1				
24	Rx4-	Receiver Inverted Data Output.	1				
25	Rx4+	Receiver Non-Inverted Data Output.					
26	GND	Transmitter Ground (Common with Receiver Ground).	1				
27	ModPrsl	Module Present.					
28	IntL	Interrupt.	2				
29	VccTx	+3.3V Transmitter Power Supply.					
30	Vcc1	+3.3V Power Supply.					
31	LPMode	Low-Power Mode.	2				
32	GND	Transmitter Ground (Common with Receiver Ground).	1				
33	Tx3+	Transmitter Non-Inverted Data Input.					
34	Tx3-	Transmitter Inverted Data Output.					
	1						

35	GND	Transmitter Ground (Common with Receiver Ground).	1
36	Tx1+	Transmitter Non-Inverted Data Input.	
37	Tx1-	Transmitter Inverted Data Output.	
38	GND	Transmitter Ground (Common with Receiver Ground).	1

Notes:

- 1. The module signal grounds are isolated from the module case.
- 2. This is an open collector/drain output that, on the host board, requires a $4.7k\Omega$ to $10k\Omega$ pull-up resistor to the Host_Vcc.

Electrical Pin-Out Details

Recommended Host Board Power Supply Filter Network

Recommended Application Interface Block Diagram

Mechanical Specifications

Unit: mm

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

