

JG325B-OPC

HP® JG325B Compatible TAA 40GBase-SR4 QSFP+ Transceiver (MMF, 850nm, 150m, MPO, DOM)

Features

- SFF-8436 Compliance
- MPO Connector
- Multi-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 40GBase Ethernet
- 4x10G Breakout Option
- Access and Enterprise

Product Description

This HP® JG325B compatible QSFP+ transceiver provides 40GBase-SR4 throughput up to 150m over multi-mode fiber (MMF) using a wavelength of 850nm via an MPO connector. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with HP®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	Vcc	-0.5		4.0	V
Storage Temperature	Tstg	-40		85	°C
Operating Case Temperature	Тс	0	25	70	°C
Relative Humidity	RH	5		95	%
Data Rate Per Channel			10.3125		Gbps

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Supply Voltage	Vcc	3.135	3.3	3.465	V		
Module Supply Current	Icc			430	mA		
Power Dissipation	P _{DISS}			1.5	W		
Transmitter							
Input Differential Impedance	ZIN		100		Ω		
Differential Data Input Swing	VIN,pp	180		900	mVp-p		
Receiver							
Output Differential Impedance	ZOUT		100		Ω		
Differential Data Output Swing	VOUT,pp	300		850	mVp-p	1	
Data Output Rise Time/Fall Time	Tr/Tf	28			ps	2	

Notes:

- 1. Internally AC coupled but requires an external 100Ω differential load termination.
- 2. 20 80 %.

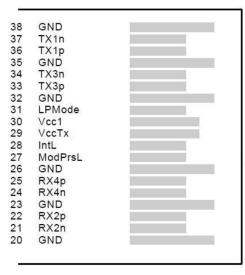
Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter							
Launch Optical Power	Po	-7.6		+2.4	dBm	1	
Center Wavelength Range	λC	830	850	860	nm		
Extinction Ratio	ER	3			dB	2	
Spectral Width (RMS)	Δλ			0.65	nm		
Transmitter and Dispersion Penalty	TDP			3.2	dB		
Optical Return Loss Tolerance	ORLT			12	dB		
Eye Diagram	IEEE Std 802.3ba Compatible						
Receiver							
Center Wavelength	λC	830	850	860	nm		
Receiver Sensitivity (Pavg)	S			-9.5	dBm	3	
Damage Threshold	P _{OL}	2.5			dBm	3	
Optical Return Loss	ORL	12			dB		
LOS Assert	LOSA	-30			dBm		
LOS De-Assert	LOSD			-11	dBm		
LOS Hysteresis		0.5			dB		

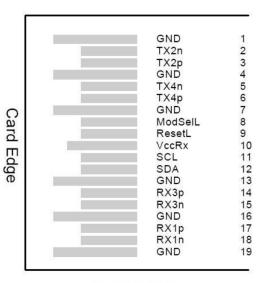
Notes:

- 1. The optical power is launched into OM3 MMF.
- 2. Measured with a PRBS 2³¹-1 test pattern @10.3125Gbps.
- 3. Measured with PRBS 2^{31} -1 test pattern, 10.3125Gbps, and BER<10⁻¹².

Pin Descriptions

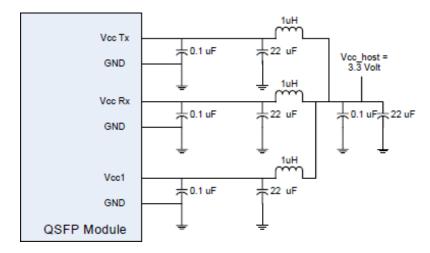

	Pin Descriptions Pin Logic Symbol Name/Descriptions Notes								
Pin	Logic	Symbol	Name/Descriptions						
1		GND	Module Ground.	1					
2	CML-I	Tx2-	Transmitter Inverted Data Input.						
3	CML-I	Tx2+	Transmitter Non-Inverted Data Input.						
4		GND	Module Ground.	1					
5	CML-I	Tx4-	Transmitter Inverted Data Input.						
6	CML-I	Tx4+	Transmitter Non-Inverted Data Input.						
7		GND	Module Ground.	1					
8	LVTTL-I	ModSelL	Module Select.	2					
9	LVTTL-I	ResetL	Module Reset.	2					
10		VccRx	+3.3V Receiver Power Supply.						
11	LVCMOS-I	SCL	2-Wire Serial Interface Clock.	2					
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	2					
13		GND	Module Ground.	1					
14	CML-O	Rx3+	Receiver Non-Inverted Data Output.						
15	CML-O	Rx3-	Receiver Inverted Data Output.						
16		GND	Module Ground.	1					
17	CML-O	Rx1+	Receiver Non-Inverted Data Output.						
18	CML-O	Rx1-	Receiver Inverted Data Output.						
19		GND	Module Ground.	1					
20		GND	Module Ground.	1					
21	CML-O	Rx2-	Receiver Inverted Data Output.						
22	CML-O	Rx2+	Receiver Non-Inverted Data Output.						
23		GND	Module Ground.	1					
24	CML-O	Rx4-	Receiver Inverted Data Output.						
25	CML-O	Rx4+	Receiver Non-Inverted Data Output.						
26		GND	Module Ground.						
27	LVTTL-O	ModPrsL	Module Present. Internally pulled down to GND.						
28	LVTTL-O	IntL	Interrupt Output. Should be pulled up on the host board.						
29		VccTx	+3.3V Transmitter Power Supply.						
30		Vcc1	+3.3V Power Supply.						
31	LVTTL-I	LPMode	Low-Power Mode.						
32		GND	Module Ground.						
33	CML-I	Tx3+	Transmitter Non-Inverted Data Input.						
34	CML-I	Tx3-	Transmitter Inverted Data Input.						
	1	1	I .						

35		GND	Module Ground.	1
36	CML-I	Tx1+	Transmitter Non-Inverted Data Input.	
37	CML-I	Tx1-	Transmitter Inverted Data Input.	
38		GND	Module Ground.	1

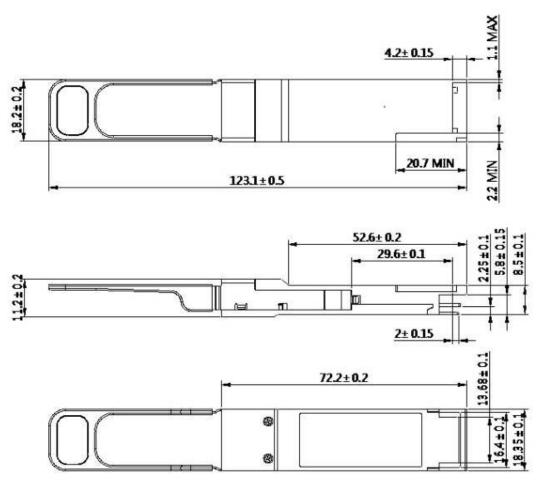

Notes:

- 1. The module signal grounds are isolated from the module case.
- 2. This is an open collector/drain output that on the host board requires a $4.7k\Omega$ - $10k\Omega$ pull-up resistor to the Host_Vcc.

Electrical Pin-Out Details



Top Side Viewed from Top



Bottom Side Viewed from Bottom

Recommended Host Board Power Supply Filter Network

Mechanical Specifications

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

