J9153A-80-OPC HP® J9153A-80 Compatible 10GBase-ZR SFP+ Transceiver (SMF, 1550nm, 80km, LC, DOM) #### **Features** - SFF-8432 and SFF-8472 Compliance - Duplex LC Connector - Temperature-stabilized EML transmitter and APD receiver - Single-mode Fiber - Commercial Temperature 0 to 70 Celsius - Hot Pluggable - Metal with Lower EMI - Excellent ESD Protection - RoHS Compliant and Lead Free ## **Applications:** - 10GBase-ZR Ethernet - 8x/10x Fibre Channel - Access, Metro and Enterprise ### **Product Description** This HP® J9153A-80 compatible SFP+ transceiver provides 10GBase-ZR throughput up to 80km over single-mode fiber (SMF) using a wavelength of 1550nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent HP® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. We stand behind the quality of our products and proudly offer a limited lifetime warranty. OptioConnect's transceivers are RoHS compliant and lead-free. ## **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Max. | Unit | |----------------------------|------------------|------|------|------| | Maximum Supply Voltage | Vcc | -0.5 | 4.0 | V | | Storage Temperature | TS | -40 | 85 | °C | | Operating Case Temperature | Тс | 0 | 70 | °C | | Operating Humidity | RH | 5 | 85 | % | | Receiver Power | R _{MAX} | | -7 | dBm | | Maximum Bitrate | B _{max} | | 11.3 | Gbps | # **Electrical Characteristics** (TOP=25°C, Vcc=3.3Volts) | · | | | | | | | |--------------------------------|-------------------|------|------|------|------|-------| | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | | Power Supply Voltage | Vcc | 3.15 | 3.30 | 3.43 | V | | | Power Supply Current | Icc | | | 303 | mA | | | Power Consumption | P _{DISS} | | | 1 | W | | | Transmitter | | | | | | | | Differential data input swing | Vin,pp | 120 | | 850 | mV | | | Input differential impedance | Zin | 80 | 100 | 120 | Ω | | | Receiver | | · | | | | | | Differential data output swing | Vout, pp | 300 | | 850 | mV | | | Output differential impedance | Zin | 80 | 100 | 120 | Ω | | ## **Optical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |------------------------------------|------------------|------|------|------|------|-------| | Transmitter | | | | | | | | Optical Power (average) | P _{AVE} | 0 | | 4 | dBm | 1 | | Transmitter and Dispersion Penalty | TDP | | | 3 | dB | | | Optical Extinction Ratio | ER | 9 | | | dB | | | Optical Wavelength | Τλ | 1530 | 1550 | 1565 | nm | | | Insertion loss | IL | | 0.7 | | | | | Receiver | | | | | | | | Receiver Sensitivity (average) | R _{AVE} | | | -24 | dBm | 2 | | Receiver overload | P _{max} | -7 | | | dBm | 3 | | Receiver wavelength | Rλ | 1260 | | 1565 | nm | | #### Notes: - 1. Coupled into a Single-mode fibre - 2. Average power, back-to-back, @10.31Gbps, BER 1E-12, PRBS 231-1. TDP not included. - 3. Exceeding the Receiver overload can physically damage the module. Please use appropriate attenuation. ### **Pin Descriptions** | Pin | Symbol | Name/Descriptions | Ref. | |-----|------------|---|------| | 1 | VeeT | Transmitter Ground (Common with Receiver Ground). | 1 | | 2 | TX Fault | Transmitter Fault. LVTTL-O | 2 | | 3 | TX Disable | Transmitter Disable. Laser output disabled on high or open. LVTT-I. | 3 | | 4 | SDA | 2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I/O. | | | 5 | SCL | 2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I. | | | 6 | MOD_ABS | Module Absent, Connect to VeeT or VeeR in Module. | 4 | | 7 | RS0 | Rate Select 0. Not used | 5 | | 8 | LOS | Loss of Signal indication. Logic 0 indicates normal operation. LVTTL-O. | 2 | | 9 | RS1 | Rate Select 1. Not used | 5 | | 10 | VeeR | Receiver Ground (Common with Transmitter Ground). | 1 | | 11 | VeeR | Receiver Ground (Common with Transmitter Ground). | 1 | | 12 | RD- | Receiver Inverted DATA out. AC Coupled. CML-O. | | | 13 | RD+ | Receiver Non-inverted DATA out. AC Coupled. CML-O. | | | 14 | VeeR | Receiver Ground (Common with Transmitter Ground). | 1 | | 15 | VccR | Receiver Power Supply. | | | 16 | VccT | Transmitter Power Supply. | | | 17 | VeeT | Transmitter Ground (Common with Receiver Ground). | 1 | | 18 | TD+ | Transmitter Non-Inverted DATA in. AC Coupled. CML-I. | | | 19 | TD- | Transmitter Inverted DATA in. AC Coupled. CML-O. | | | 20 | VeeT | Transmitter Ground (Common with Receiver Ground). | 1 | #### Notes: - 1. The module signal ground contacts, VeeR and VeeT, should be isolated from the module case. - 2. This contact is an open collector/drain output and should be pulled up to the Vcc_Host with resister in the range $4.7K\Omega$ to $10K\Omega$. Pull ups can be connected to one or several power supplies, however the host board design shall ensure that no module contract has voltage exceeding module VccT/R +0.5.V. - 3. Tx_Disable is an input contact with a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to VccT inside module. - 4. Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull the contract up to Vcc_Host with a resistor in the range from $4.7K\Omega$ to $10K\Omega$. Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot. 5. Internally pulled down per SFF-8431 Pin-out of connector Block on Host board ### **Recommended Circuit Schematic** ### **Mechanical Specifications** Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA). #### **EEPROM Information** EEPROM memory map specific data field description is as below: ## **OptioConnect** ### Innovation for the Future of High-Speed Networking #### Who We Are OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures. #### What We Do At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with: - Superior Performance - Network and traffic optimization - Intelligent energy management - Seamless OEM compatibility - Scalable cost-efficiency #### **Smarter Networks by Design** Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform. #### **Our Team** Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions. #### **Our Mission** To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world. #### **Let's Connect** Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com