

SFP-2.5GMLC-T-OPC

Moxa® SFP-2.5GMLC-T Compatible TAA 2.5GBase-SX SFP Transceiver (MMF, 850nm, 550m, LC, -40 to 85C)

Features

- SFF-8074i and SFF-8472 Compliance
- VCSEL Transmitter and PIN Receiver
- Duplex LC Connector
- Industrial Temperature: -40 to 85 Celsius
- Multi-Mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead-Free

Applications:

- 2.5GBase Ethernet
- Access and Enterprise

Product Description

This Moxa® compatible SFP transceiver provides 2.5GBase-SX throughput up to 550m over multi-mode fiber (MMF) using a wavelength of 850nm via an LC connector. It is capable of withstanding rugged environments and can operate at temperatures between -40 and 85C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Moxa®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5		4.0	V	1
Storage Temperature	Tstg	-40		85	°C	2
Operating Case Temperature	Тс	-40		85	°C	3
Data Rate	DR		2.5		Gbps	4
Bit Error Rate	BER			10 ⁻¹²		

Notes:

- 1. For the electrical power interface.
- 2. Ambient temperature.
- 3. Case temperature.
- 4. IEEE 802.3.

Link Distances

Data Rate	Fiber Type	Distance Range (m)
2.5Gbps	62.5/125μm MMF	300
2.5Gbps	50/125μm MMF	500

Electrical Characteristics (Tc=25°C, Vcc=3.3 Volts)

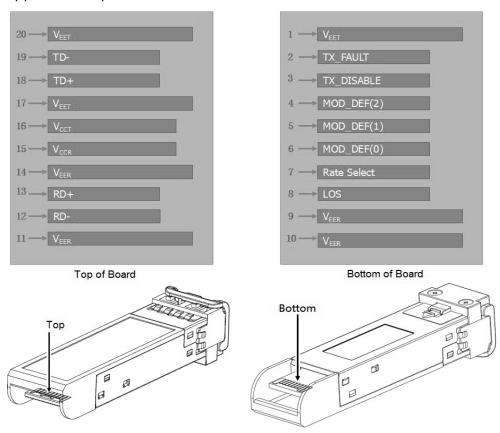
		-				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.15	3.30	3.43	V	
Power Supply Current	Icc		130	180	mA	
Transmitter						
Input Differential Impedance	RIN	80	100	120	Ω	
Single-Ended Data Input Swing	VIN,pp	250		1200	mV	
Transmit Disable Voltage	VD	2		Vcc	V	
Transmit Enable Voltage	VEN	Vee		Vee+0.8	V	
Receiver						
Single-Ended Data Output Swing	VOUT,pp	250	350	550	mV	
LOS Fault	VLOSA			Host_Vcc	V	
LOS Normal	VLOSD	Vee		Vee+0.5	V	

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes		
Transmitter								
Output Optical Power	PTX	-9		-3	dBm	1		
Optical Center Wavelength	λC	830	850	860	nm			
Extinction Ratio	ER	8.2			dB			
Spectral Width (RMS)	Δλ			0.85	nm			
Optical Rise/Fall Time (20-80%)	Tr/Tf			150	ps			
Receiver								
Receiver Overload	POL	0			dBm	2		
Optical Center Wavelength	λC	770		860	nm			
Receiver Sensitivity	RXSEN			-17	dBm	2		
Optical Return Loss	ORL	27			dB			
LOS Assert	LOSA	-35			dBm			
LOS De-Assert	LOSD			-18	dBm			
LOS Hysteresis	LOSH	0.5	3	5	dB			

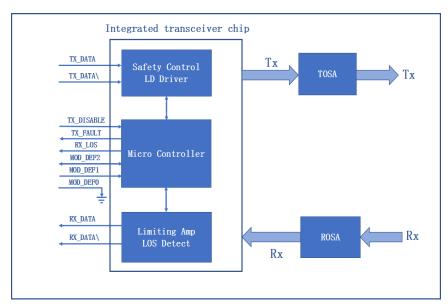
Notes:

- 1. Class 1 product.
- 2. Measured with worst ER, 2^7 –1 PRBS, and BER< 10^{-12} .


Pin Descriptions

Pin	Symbol	Name/Description	Notes
1	VeeT	Transmitter Ground (Common with Receiver Ground).	1
2	Tx_Fault	Transmitter Fault. LVTTL-O.	2
3	Tx_Disable	Transmitter Disable. Laser output disabled on "high" or "open." LVTT-I.	3
4	SDA	2-Wire Serial Interface Data (Same as MOD-DEF2 in INF-8074i). LVTTL-I/O.	
5	SCL	2-Wire Serial Interface Clock (Same as MOD-DEF2 in INF-8074i). LVTTL-I.	
6	MOD_ABS	Module Absent. Connect to the VeeT or VeeR in the module.	4
7	RS0	Rate Select 0. Not Used.	5
8	LOS	Loss of Signal Indication. "Logic 0" indicates normal operation. LVTTL-O.	2
9	RS1	Rate Select 1. Not Used.	5
10	VeeR	Receiver Ground (Common with Transmitter Ground).	1
11	VeeR	Receiver Ground (Common with Transmitter Ground).	1
12	RD-	Receiver Inverted Data Out. AC Coupled. CML-O.	
13	RD+	Receiver Non-Inverted Data Out. AC Coupled. CML-O.	

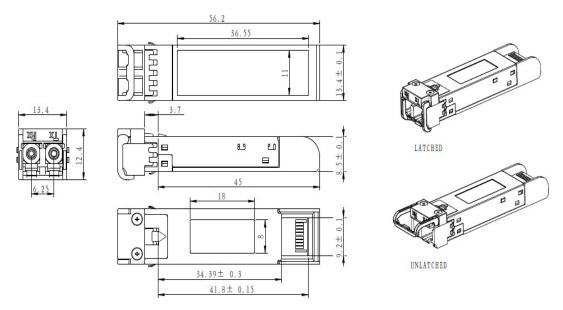
14	VeeR	Receiver Ground (Common with Transmitter Ground).	1
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	VeeT	Transmitter Ground (Common with Receiver Ground).	1
18	TD+	Transmitter Non-Inverted Data In. AC Coupled. CML-I.	
19	TD-	Transmitter Inverted Data In. AC Coupled. CML-I.	
20	VeeT	Transmitter Ground (Common with Receiver Ground).	1


Notes:

- 1. The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
- 2. This contact is an open collector/drain output and should be pulled up to the Host_Vcc with resistor in the range $4.7k\Omega$ to $10k\Omega$. Pull-ups can be connected to one or several power supplies; however, the host board design shall ensure that no module contract has voltage exceeding module VccT/R+0.5V.
- 3. Tx_Disable is an input contact with a $4.7k\Omega$ to $10k\Omega$ pull-up resistor to the VccT inside the module.
- 4. MOD_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull the contact up to the Host_Vcc with a resistor in the range from $4.7k\Omega$ to $10k\Omega$. MOD_ABS is asserted "high" when the SFP+ module is physically absent from a host slot.
- 5. Internally pulled down per SFF-8431.

Pin-Out of Connector Block on the Host Board

Block Diagram of Transceiver


Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

All Dimensions are ±0.2mm Unless Otherwise Specified

Unit: mm

Net Weight of Module: 15.5g/pcs Net Weight of Dust Cap: 0.95g/pcs

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

