

SFP-10GB-DW62-80-I-J-OPC

Juniper Networks® Compatible TAA 10GBase-DWDM SFP+ Transceiver C-Band 50GHz (SMF, 1527.99nm, 80km, LC, DOM, -40 to 85C)

Features

- SFF-8432 and SFF-8472 Compliance
- Duplex LC Connector
- Single-mode Fiber
- Industrial Temperature -40 to 85 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 10x Gigabit Ethernet over DWDM
- 8x/10x Fibre Channel
- Access and Enterprise

Product Description

This Juniper Networks® compatible SFP+ transceiver provides 10GBase-DWDM throughput up to 80km over single-mode fiber (SMF) using a wavelength of 1527.99nm via an LC connector. It is capable of withstanding rugged environments and can operate at temperatures between -40 and 85C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Juniper Networks®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5		3.6	V	
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	-40		85	°C	
Operating Relative Humidity	RH	5		95	%	
Power Supply Current	Icc			2000	mW	
Bit Rate	BR			11.1	Gbps	1
Bit Error Rate	BER			10E ⁻¹²		2
Maximum Supported Link Length	Lmax			80	km	1

Notes:

- 1. 10GBASE-ZR, 10GBASE-ZW, and 1200-SM-LL-L 10GFC.
- 2. Tested with a 2³¹-1 PRBS.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Supply Voltage	Vcc	3.14	3.3	3.46	V		
Transmitter							
Input Differential Impedance	RIN	80	100	120	Ω		
Differential Data Input	VIN	180		700	mVp-p		
Transmit Disable Voltage	VDIS	2		Host_Vcc	V		
Transmit Enable Voltage	VEN	Vee		Vee+0.8	V		
Transmit Fault Assert Voltage	VFA	2		Host_Vcc	V		
Transmit Fault De-Assert Voltage	VFDA	Vee		Vee+0.4	V		
Receiver							
Differential Data Output	VOD	mVp-p	350		850		
Output Rise Time	Tr	pS	25				
Output Fall Time	Tf		25				
LOS Fault	VLOSft		2		Host_Vcc		
LOS Normal	VLOSnr		Vee		Vee+0.4		

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Side-Mode Suppression Ratio	SMSR	30			dB	
Optical Output Power	Pavg	0		4	dBm	
Extinction Ratio	ER	8.2			dB	
Average Launch Power of Off Transmitter	Poff			-30	dBm	
Relative Intensity Noise	RIN			-128	dB/Hz	
Receiver						
Center Wavelength	λC	1260		1620	nm	
Receiver Sensitivity	Rsense			-24	dBm	1
Receiver Sensitivity @80km Fiber	Rsense			-21	dBm	2
Receiver Overload		-7			dBm	
Optical Return Loss		27			dB	
LOS Assert	LOSA	-37			dBm	
LOS De-Assert	LOSD			-27	dBm	
LOS Hysteresis		0.5			dB	

Notes:

- 1. Measured at 1528-1600nm, ER=9dBm, PRBS 2^{31} -1, and BER better than $10E^{-12}$.
- 2. Loopback using 80km fiber (SMF-28).

Pin Descriptions

Pin	Symbol	Name/Description	Notes
1	VeeT	Transmitter Ground.	1
2	Tx_Fault	Transmitter Fault Out.	2
3	Tx_Disable	Transmitter Disable In. LVTTL.	3
4	SDA	Module Definition Identifiers.	4
5	SCL	Module Definition Identifiers.	4
6	MOD_ABS	Module Definition Identifiers.	4
7	RS0	Receiver Rate Select. LVTTL. Transmitter Rate Select.	5
8	LOS	Loss of Signal.	6
9	RS1	Receiver Rate Select. LVTTL. Transmitter Rate Select.	5
10	VeeR	Receiver Ground.	1
11	VeeR	Receiver Ground.	1
12	RD-	Receiver Negative Data Out. CML.	7
13	RD+	Receiver Positive Data Out. CML.	8
14	VeeR	Receiver Ground.	1
15	VccR	Receiver Power Supply.	9
16	VccT	Transmitter Power Supply.	9
17	VeeT	Transmitter Ground.	1
18	TD+	Transmitter Positive Data In. CML.	10
19	TD-	Transmitter Negative Data In. CML.	11
20	VeeT	Transmitter Ground.	1

Notes:

- 1. These pins should be connected to the signal ground on the host board.
- 2. Logic "1" Output = Laser fault (Laser off before Tx Fault).
 - Logic "0" Output = Normal operation.

This pin is open collector compatible and should be pulled up to the Host_Vcc with a $10k\Omega$ resistor.

- 3. Logic "1" Input (or No Connection) = Laser off.
 - Logic "0" Input = Laser on.
 - This pin is internally pulled up to the VccT with a $10k\Omega$ resistor.
- 4. Serial ID with SFF-8472 diagnostics module definition pins should be pulled up to the Host_Vcc with $10k\Omega$ resistors.
- 5. These pins have an internal $30k\Omega$ pull-down to ground. A signal on either of these pins will not affect module performance.
- 6. Sufficient optical signal for potential BER < $1x10^{-12}$ = Logic "0." Insufficient optical signal for potential BER < $1x10^{-12}$ = Logic "1." This pin is open collector compatible and should be pulled up to the Host_Vcc with a $10k\Omega$ resistor.

- 7. Light On = Logic "0" output receiver data output is internally AC coupled and series terminated with a 50Ω resistor.
- 8. Light On = Logic "1" output receiver data output is internally AC coupled and series terminated with a 50Ω resistor.
- 9. This pin should be connected to a filtered +3.3V power supply on the host board.
- 10. Logic "1" Input = Light on transmitter data inputs are internally AC coupled and terminated with a 100Ω resistor.
- 11. Logic "0" Input = Light on transmitter data inputs are internally AC coupled and terminated with a 100Ω resistor.

Pin Connectors

Recommended Circuit Schematic

Mechanical Specifications

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

