addon

OSFP-2X400G-FR4-P-AO

Juniper Networks® OSFP-2X400G-FR4-P Compatible TAA 800GBase-2xFR4 PAM4 OSFP Transceiver (SMF, 1310nm, 2km, 2xLC, DOM, CMIS 5.0)

Features

- Supports Both Ethernet and InfiniBand NDR
- 2x400GBASE-FR4 Optical Interface
- 2x400GAUI-4 C2M Electrical Interface
- InfiniBand NDR Electrical and Optical Interface
- Type 2 Housing with Dual LC Connector
- Support 850Gbps Aggregate Bit Rate
- I2C Management Interface Compliant to CMIS Rev5.0
- Class 1 Laser Certified
- Operating Temperature: 0 to 70 Celsius
- Hot-Pluggable OSFP Form Factor
- RoHS Compliant and Lead-Free

Applications

• 2x400GBase Ethernet

Product Description

This Juniper Networks® compatible OSFP transceiver provides 800GBase-2xFR4 throughput up to 2km over single-mode fiber (SMF) PAM4 using a wavelength of 1310nm via a 2xLC connector. It can operate at temperatures between 0 and 70C. All of our transceivers are built to comply with Multi-Source Agreement (MSA) standards and are uniquely serialized and tested for data-traffic and application to ensure seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	-0.5		3.6	V	
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	1
Relative Humidity (Non-Condensing)	RH	5		95	%	
Maximum Power Dissipation	PDISS			16.5	W	
Maximum Power Dissipation (Low-Power Mode)	PDLP			2	W	
Signaling Speed Per Lane	DRL		53.125		GBd	
Operating Distance		2		2000	m	

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.3	3.465	V		
Data Input Voltage Diffe	rential	IVdip-VdinI			1	V	
Control Input Voltage Di	fferential	Vi	-0.3		Vcc+0.5	V	
Control Output Current		lo	-20		20	mA	
Instantaneous Peak Cur	rent at Hot Plug	lcc_IP			6600	mA	
Sustained Peak Current	at Hot Plug	lcc_SP			5494.5	mA	
Control Input Voltage -	High	VIH	Vcc*0.7		Vcc+0.3	V	
Control Input Voltage -	Low	VIL	-0.3		Vcc*0.3	V	
2-Wire Serial Interface	Clock Rate				400	kHz	
Power Supply Noise (1k				66	mVp-p		
Transmitter							
Differential Pk-Pk Input	Voltage Tolerance (TP1a)		750			mV	
Pk-Pk AC Common-	Low-Frequency (VCMLF)				32	mV	
Mode Voltage Tolerance	Full-Band (VCMFB)				80		
Differential-Mode to Co	ommon-Mode Return	RLcd	802.3ck 120G-2			dB	
Effective Return Loss		ERL	8.5			dB	
Differential Terminatio	n Mismatch				10	%	
Single-Ended Voltage Tolerance Range			-0.4		3.3	V	
DC Common-Mode Voltage Tolerance			-0.35		2.85	V	
Receiver							
Pk-Pk AC Common- Mode Voltage	Low-Frequency (VCMLF)				32	mV	
-	Full-Band (VCMFB)				80		

Differential Pk-Pk	Short-Mode				600	mV	
Output Voltage	Long-Mode				845		
Eye Height	EH	15			mV		
Vertical Eye Closure	Vertical Eye Closure				12	dB	
Common-Mode to Differ Loss	rential-Mode Return	RLDc	802.3ck 120G-1			dB	
Effective Return Loss		ERL	8.5			dB	
Differential Termination	Mismatch				10	%	
Transition Time	Transition Time					ps	
DC Common-Mode Volta	DC Common-Mode Voltage Tolerance				2.85	V	
Low-Speed Control and So	ense Signals						
Module Output SCL and	SDA	VOL	0		0.4	V	
Module Input SCL and SI)A	VIL	-0.3		Vcc*0.3	V	
			Vcc*0.7		Vcc+0.5	V	
InitMode, ResetL, and M	VIL	-0.3		0.8	V		
	VIH	2		Vcc+0.3	V		
IntL	IntL		0		0.4	V	
		VOH	Vcc-0.5		Vcc+0.3	V	

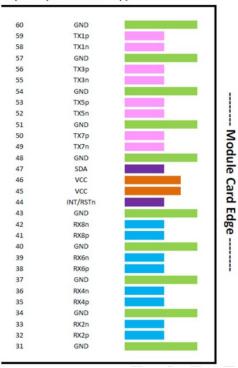
Optical Characteristics

optical characteristics							
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter							
Wavelength LO, L4		λC0, λC4	1264.5	1271	1277.5	nm	
Wavelength L1, L5		λC1, λC5	1284.5	1291	1297.5	nm	
Wavelength L2, L6		λC2, λC6	1304.5	1311	1317.5	nm	
Wavelength L3, L7		λC3, λC7	1324.5	1331	1337.5	nm	
Side-Mode Suppression Ratio		SMSR	30			dB	
Total Average Launch Power		AOPT			10.4	dBm	
Average Launch Power Per Lane		AOPL	-3.2		4.4	dBm	1
Outer Optical	TDECQ<1.4dB	TOMA	-0.2		3.7	dBm	
Modulation Amplitude (OMAouter) Per Lane	1.4dB≤TDECQ≤3.4dB		-1.6+TDECQ				
Difference in Launch Powe (OMAouter)	er Between Any Two Lanes	AOPd			3.9	dB	
Transmitter and Dispersion (TDECQ) Per Lane	TDECQ			3.4	dB		
Transmitter Eye Closure for PAM4 (TECQ) Per Lane		TECQ			3.4	dB	
TDECQ – TECQ				2.5	dB		
Overshoot/Undershoot					22	%	

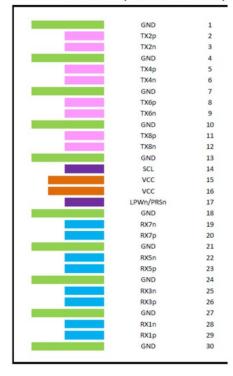
Transmitter Power Excursi				1.8	dBm		
Average Launch Power of	Toff			-16	dBm		
Extinction Ratio	ER	3.5			dB		
Transmitter Transition Tim	ne (Maximum)	Tr			17	ps	
RIN _{17.1} OMA (Maximum)	RIN _{17.1} OMA (Maximum)				-136	dB/Hz	
Optical Return Loss Tolera	nce	ORL			17.1	dB	
Transmitter Reflectance		TR			-26	dB	2
Receiver							
Wavelength LO, L4		λC0, λC4	1264.5	1271	1277.5	nm	
Wavelength L1, L5	λC1, λC5	1284.5	1291	1297.5	nm		
Wavelength L2, L6	Wavelength L2, L6		1304.5	1311	1317.5	nm	
Wavelength L3, L7		λC3, λC7	1324.5	1331	1337.5	nm	
Damage Threshold Per Lar	ne	AOPD	5.4			dBm	
Average Receive Power Pe	er Lane	AOPR	-7.2		4.4	dBm	
Receive Power (OMAoute	r) Per Lane	OMAR			3.7	dBm	
Difference in Receive Powe (OMAouter) Maximum	er Between Any Two Lanes	AOPg			4.1	dB	
Receiver Reflectance		RR			-26	dB	
Receiver Sensitivity	TECQ<1.4dB	SOMA			-4.6	dBm	
(OMAouter) Per Lane	1.4dB≤TECQ≤3.4dB				-6+TECQ		
Stressed Receiver Sensitivity (OMAouter) Per Lane		SRS			-2.6	dBm	3
Stressed Eye Closure for PA Under Test	Stressed Eye Closure for PAM4 (SECQ) Per Lane Under Test			3.4		dB	
OMAouter of Each Aggress			1.4		dBm		

Notes:

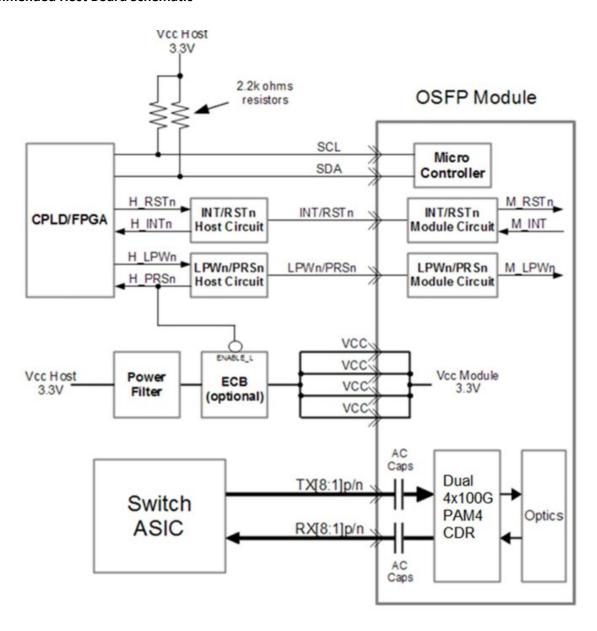
- 1. Average launch power, per lane (minimum) is informative and not the principal indicator of signal strength.
- 2. Transmitter reflectance is defined looking into the transmitter.
- 3. Measured with conformance test signal at TP3 for the BER= 2.4×10^{-4} .

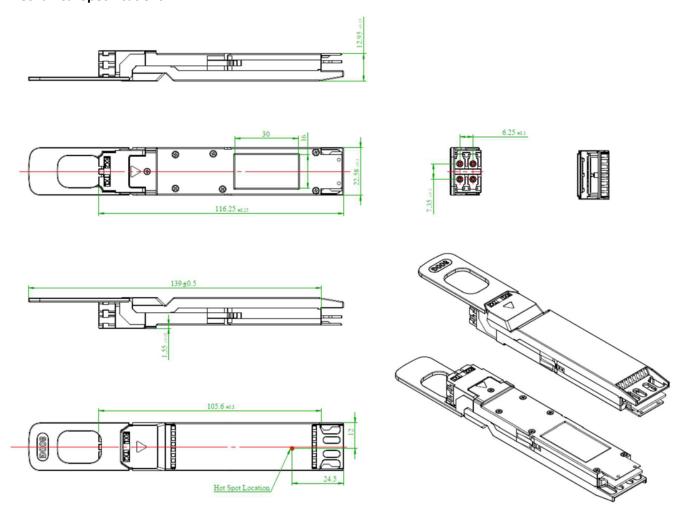

Pin Descriptions

Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground.	
2	CML-I	Tx2+	Transmitter Data Non-Inverted.	
3	CML-I	Tx2-	Transmitter Data Inverted.	
4		GND	Module Ground.	
5	CML-I	Tx4+	Transmitter Data Non-Inverted.	
6	CML-I	Tx4-	Transmitter Data Inverted.	
7		GND	Module Ground.	
8	CML-I	Tx6+	Transmitter Data Non-Inverted.	
9	CML-I	Tx6-	Transmitter Data Inverted.	
10		GND	Module Ground.	
11	CML-I	Tx8+	Transmitter Data Non-Inverted.	
12	CML-I	Tx8-	Transmitter Data Inverted.	
13		GND	Module Ground.	
14	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	
15		Vcc	+3.3V Power.	
16		Vcc	+3.3V Power.	
17	Multi-Level	LPWn/PRSn	Low-Power Mode/Module Present.	
18		GND	Module Ground.	
19	CML-O	Rx7-	Receiver Data Inverted.	
20	CML-O	Rx7+	Receiver Data Non-Inverted.	
21		GND	Module Ground.	
22	CML-O	Rx5-	Receiver Data Inverted.	
23	CML-O	Rx5+	Receiver Data Non-Inverted.	
24		GND	Module Ground.	
25	CML-O	Rx3-	Receiver Data Inverted.	
26	CML-O	Rx3+	Receiver Data Non-Inverted.	
27		GND	Module Ground.	
28	CML-O	Rx1-	Receiver Data Inverted.	
29	CML-O	Rx1+	Receiver Data Non-Inverted.	
30		GND	Module Ground.	
31		GND	Module Ground.	
32	CML-O	Rx2+	Receiver Data Non-Inverted.	
33	CML-O	Rx2-	Receiver Data Inverted.	
34		GND	Module Ground.	
35	CML-O	Rx4+	Receiver Data Non-Inverted.	
36	CML-O	Rx4-	Receiver Data Inverted.	
37		GND	Module Ground.	
38	CML-O	Rx6+	Receiver Data Non-Inverted.	
39	CML-O	Rx6-	Receiver Data Inverted.	


40		GND	Module Ground.	
41	CML-O	Rx8+	Receiver Data Non-Inverted.	
42	CML-O	Rx8-	Receiver Data Inverted.	
43		GND	Module Ground.	
44	Multi-Level	INT/RSTn	Module Interrupt/Module Reset.	
45		Vcc	+3.3V Power.	
46		Vcc	+3.3V Power.	
47	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	
48		GND	Module Ground.	
49	CML-I	Тх7-	Transmitter Data Inverted.	
50	CML-I	Tx7+	Transmitter Data Non-Inverted.	
51		GND	Module Ground.	
52	CML-I	Tx5-	Transmitter Data Inverted.	
53	CML-I	Tx5+	Transmitter Data Non-Inverted.	
54		GND	Module Ground.	
55	CML-I	Tx3-	Transmitter Data Inverted.	
56	CML-I	Tx3+	Transmitter Data Non-Inverted.	
57		GND	Module Ground.	
58	CML-I	Tx1-	Transmitter Data Inverted.	
59	CML-I	Tx1+	Transmitter Data Non-Inverted.	
60		GND	Module Ground.	

Electrical Pad Layout


Top Side (viewed from top)


Bottom Side (viewed from bottom)

Recommended Host Board Schematic

Mechanical Specifications

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070