

#### **EX-SFP-1GE-T-OPC**

Juniper Networks® EX-SFP-1GE-T Compatible TAA 10/100/1000Base-TX SFP Transceiver (Copper, 100m, RJ-45)

#### **Features**

- INF-8074 Compliance
- RJ-45 Connector
- Copper Media Type
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free



## **Applications:**

- 1000Base Ethernet
- Access and Enterprise

### **Product Description**

This Juniper Networks® EX-SFP-1GE-T compatible SFP transceiver provides 10/100/1000Base-TX throughput up to 100m over a copper connection via a RJ-45 connector. It can operate at temperatures between 0 and 70C. This TX module supports 10/100/1000Base auto-negotiation and can be configured to fit your needs. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Juniper Networks®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open internaltional trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")



## **Absolute Maximum Ratings**

| Parameter         | Symbol | Min. | Тур. | Max. | Unit | Notes |
|-------------------|--------|------|------|------|------|-------|
| Supply Current    | Icc    |      | 320  | 375  | mA   | 1     |
| Input Voltage     | Vcc    | 3.13 | 3.3  | 3.47 | V    | 2     |
| Maximum Voltage   | Vmax   |      |      | 4    | V    |       |
| Surge Current     | Isurge |      |      | 30   | mA   | 3     |
| Power Consumption |        |      |      | 1.5  | W    |       |

#### Notes:

- 1. 1.2W maximum power over the full range of voltage and temperature. Power consumption and surge current are higher than the specified values in the SFP MSA.
- 2. Referenced to GND.
- 3. Hot plug above steady state current. Power consumption and surge current are higher than the specified values in the SFP MSA.

# **Recommended Operating Conditions**

| Parameter             | Symbol | Min. | Тур. | Max. | Unit | Notes   |
|-----------------------|--------|------|------|------|------|---------|
| Data Rate             | DR     | 10   |      | 1000 | Mbps | 3, 4, 5 |
| Distance Supported    | L      |      |      | 100  | m    | 1       |
| Operating Temperature | Тс     | 0    |      | 85   | °C   |         |
| Storage Temperature   | Tstg   | -40  |      | 85   | °C   |         |

### Notes:

- 1. Category 5 UTP. BER<10<sup>-12</sup>.
- 2. Clock tolerance is +/- 50ppm.
- 3. By default, the GE-GB-P is a full duplex device in preferred master mode.
- 4. Automatic crossover detection is enabled. External crossover cable is not required.
- 5. 1000Base-T operation requires the host system to have an SGMII interface with no clocks and the module PHY to be configured per Application Note AN-2036. With a SERDES that does not support SGMII, the module will operate at 1000Base-T only.

# **Low-Speed Signals**

| Parameter         | Symbol | Min.         | Тур. | Max.         | Unit | Notes |
|-------------------|--------|--------------|------|--------------|------|-------|
| SFP Output - Low  | VOL    | 0            |      | 0.5          | V    | 1     |
| SFP Output - High | VOH    | Host_Vcc-0.5 |      | Host_Vcc+0.3 | V    | 1     |
| SFP Input - Low   | VIL    | 0            |      | 0.8          | V    | 2     |
| SFP Input - High  | VIH    | 2            |      | Vcc+0.3      | V    | 2     |

### Notes:

- 1.  $4.7k\Omega$  to  $10k\Omega$  pull-up to the Host\_Vcc, measured at the host side of the connector.
- 2.  $4.7k\Omega$  to  $10k\Omega$  pull-up to the Vcc, measured at the SFP side of the connector.

# **High-Speed Signals**

| Parameter                      | Symbol    | Min. | Тур. | Max. | Unit | Notes |  |
|--------------------------------|-----------|------|------|------|------|-------|--|
| Transmission Line - SFP        |           |      |      |      |      |       |  |
| Line Frequency                 | LF        |      | 125  |      | MHz  | 1     |  |
| Tx Output impedance            | ZOUT, TX  |      | 100  |      | Ω    | 2     |  |
| Rx Input Impedance             | ZIN, RX   |      | 100  |      | Ω    | 2     |  |
| Host - SFP                     |           |      |      |      |      |       |  |
| Single-Ended Data Input Swing  | VIN,sing  | 250  |      | 1200 | mV   | 3     |  |
| Single-Ended Data Output Swing | VOUT,sing | 350  |      | 800  | mV   | 3     |  |
| Rise/Fall Time                 | Tr/Tf     |      | 175  |      | Psec | 4     |  |
| Tx Input Impedance             | ZIN       |      | 50   |      | Ω    | 3     |  |
| Rx Output Impedance            | ZOUT      |      | 50   |      | Ω    | 3     |  |

## Notes:

- 1. 5-level encoding, per IEEE 802.3.
- 2. Differential, for all frequencies between 1MHz and 125MHz.
- 3. Single-ended.
- 4. 20-80%.

# **Pin Descriptions**

| Pin | Symbol      | Name/Description                                        | Notes |
|-----|-------------|---------------------------------------------------------|-------|
| 1   | VeeT        | Transmitter Ground (Common with Receiver Ground).       | 1     |
| 2   | Tx_Fault    | Transmitter Fault. Not Supported.                       |       |
| 3   | Tx_Disable  | Transmitter Disabled. PHY disabled on "high" or "open." | 2     |
| 4   | MOD_DEF(2)  | Module Definition 2. Data Line for Serial ID.           | 3     |
| 5   | MOD_DEF(1)  | Module Definition 1. Clock Line for Serial ID.          | 3     |
| 6   | MOD_DEF(0)  | Module Definition 0. Grounded within the module.        | 3     |
| 7   | Rate Select | No Connection Required.                                 |       |
| 8   | LOS         | Loss of Signal Indication.                              | 4     |
| 9   | VeeR        | Receiver Ground (Common with Transmitter Ground).       | 1     |
| 10  | VeeR        | Receiver Ground (Common with Transmitter Ground).       | 1     |
| 11  | VeeR        | Receiver Ground (Common with Transmitter Ground).       | 1     |
| 12  | RD-         | Receiver Inverted Data Out. AC Coupled.                 |       |
| 13  | RD+         | Receiver Non-Inverted Data Out. AC Coupled.             |       |
| 14  | VeeR        | Receiver Ground (Common with Transmitter Ground).       | 1     |
| 15  | VccR        | Receiver Power Supply.                                  |       |
| 16  | VccT        | Transmitter Power Supply.                               |       |
| 17  | VeeT        | Transmitter Ground (Common with Receiver Ground).       | 1     |
| 18  | TD+         | Transmitter Non-Inverted Data In. AC Coupled.           |       |
| 19  | TD-         | Transmitter Inverted Data In. AC Coupled.               |       |
| 20  | VeeT        | Transmitter Ground (Common with Receiver Ground).       | 1     |

# **Notes:**

- 1. The circuit ground is connected to the chassis ground.
- 2. PHY is disabled on TDIS>2.0V or open, enabled on TDIS<0.8V.
- 3. Should be pulled up with  $4.7k\Omega$  to  $10k\Omega$  on the host board to a voltage between 2.0V and 3.6V. MOD\_DEF(0) pulls the line "low" to indicate that the module is plugged in.
- 4. LVTTL is compatible with a maximum voltage of 2.5V. Not supported on GE-GB-P.



Pin-Out of Connector Block on the Host board

# **Mechanical Specifications**



# **OptioConnect**

## Innovation for the Future of High-Speed Networking

#### Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

### What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

### **Smarter Networks by Design**

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

### **Our Team**

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

### **Our Mission**

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

### **Let's Connect**

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. <a href="https://www.optioconnect.com">www.optioconnect.com</a> | info@optioconnect.com







