

SFP-1000BASE-T-SX-N-AO

Alcatel-Lucent Nokia® Compatible TAA 1000Base-TX SFP Transceiver (Copper, 100m, RJ-45)

Features

- INF-8074 Compliance
- RJ-45 Connector
- Commercial Temperature 0 to 70 Celsius
- Copper Media Type
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

Applications

- 1000Base Ethernet
- Access and Enterprise

Product Description

This Alcatel-Lucent Nokia® compatible SFP transceiver provides 1000Base-TX throughput up to 100m over a copper connection via a RJ-45 connector. It can operate at temperatures between 0 and 70C. This TX module supports 1000Base auto-negotiation and can be configured to fit your needs. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Alcatel-Lucent Nokia®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Supply Current	Icc		320	375	mA	1
Input Voltage	Vcc	3.13	3.3	3.47	V	2
Maximum Voltage	Vmax			4	V	
Surge Current	Isurge			30	mA	3
Power Consumption				1.5	W	

Notes:

- 1. 1.2W maximum power over the full range of voltage and temperature. Power consumption and surge current are higher than the specified values in the SFP MSA.
- 2. Referenced to GND.
- 3. Hot plug above steady state current. Power consumption and surge current are higher than the specified values in the SFP MSA.

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Data Rate	DR	10		1000	Mbps	3, 4, 5
Distance Supported	L			100	m	1
Operating Temperature	Тс	0		85	°C	
Storage Temperature	Tstg	-40		85	°C	

Notes:

- 1. Category 5 UTP. BER<10⁻¹².
- 2. Clock tolerance is +/- 50ppm.
- 3. By default, the GE-GB-P is a full duplex device in preferred master mode.
- 4. Automatic crossover detection is enabled. External crossover cable is not required.
- 5. 1000Base-T operation requires the host system to have an SGMII interface with no clocks and the module PHY to be configured per Application Note AN-2036. With a SERDES that does not support SGMII, the module will operate at 1000Base-T only.

Low-Speed Signals

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
SFP Output - Low	VOL	0		0.5	V	1
SFP Output - High	VOH	Host_Vcc-0.5		Host_Vcc+0.3	V	1
SFP Input - Low	VIL	0		0.8	V	2
SFP Input - High	VIH	2		Vcc+0.3	V	2

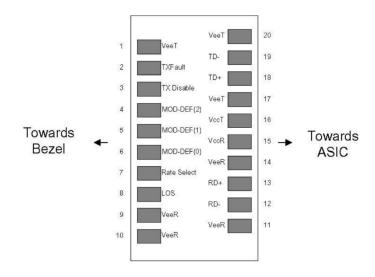
Notes:

- 1. $4.7k\Omega$ to $10k\Omega$ pull-up to the Host_Vcc, measured at the host side of the connector.
- 2. $4.7k\Omega$ to $10k\Omega$ pull-up to the Vcc, measured at the SFP side of the connector.

High-Speed Signals

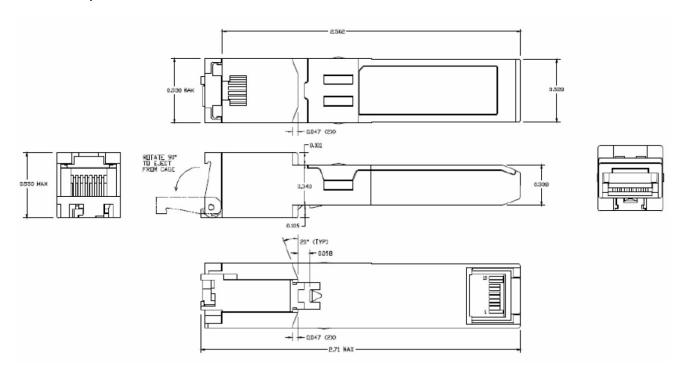
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmission Line - SFP							
Line Frequency	LF		125		MHz	1	
Tx Output impedance	ZOUT, TX		100		Ω	2	
Rx Input Impedance	ZIN, RX		100		Ω	2	
Host - SFP							
Single-Ended Data Input Swing	VIN,sing	250		1200	mV	3	
Single-Ended Data Output Swing	VOUT,sing	350		800	mV	3	
Rise/Fall Time	Tr/Tf		175		Psec	4	
Tx Input Impedance	ZIN		50		Ω	3	
Rx Output Impedance	ZOUT		50		Ω	3	

Notes:


- 1. 5-level encoding, per IEEE 802.3.
- 2. Differential, for all frequencies between 1MHz and 125MHz.
- 3. Single-ended.
- 4. 20-80%.

Pin Descriptions

Pin	Symbol	Name/Description	Notes
1	VeeT	Transmitter Ground (Common with Receiver Ground).	1
2	Tx_Fault	Transmitter Fault. Not Supported.	
3	Tx_Disable	Transmitter Disabled. PHY disabled on "high" or "open."	2
4	MOD_DEF(2)	Module Definition 2. Data Line for Serial ID.	3
5	MOD_DEF(1)	Module Definition 1. Clock Line for Serial ID.	3
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	3
7	Rate Select	No Connection Required.	
8	LOS	Loss of Signal Indication.	4
9	VeeR	Receiver Ground (Common with Transmitter Ground).	1
10	VeeR	Receiver Ground (Common with Transmitter Ground).	1
11	VeeR	Receiver Ground (Common with Transmitter Ground).	1
12	RD-	Receiver Inverted Data Out. AC Coupled.	
13	RD+	Receiver Non-Inverted Data Out. AC Coupled.	
14	VeeR	Receiver Ground (Common with Transmitter Ground).	1
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	VeeT	Transmitter Ground (Common with Receiver Ground).	1
18	TD+	Transmitter Non-Inverted Data In. AC Coupled.	
19	TD-	Transmitter Inverted Data In. AC Coupled.	
20	VeeT	Transmitter Ground (Common with Receiver Ground).	1


Notes:

- 1. The circuit ground is connected to the chassis ground.
- 2. PHY is disabled on TDIS>2.0V or open, enabled on TDIS<0.8V.
- 3. Should be pulled up with $4.7k\Omega$ to $10k\Omega$ on the host board to a voltage between 2.0V and 3.6V. MOD_DEF(0) pulls the line "low" to indicate that the module is plugged in.
- 4. LVTTL is compatible with a maximum voltage of 2.5V. Not supported on GE-GB-P.

Pin-Out of Connector Block on the Host board

Mechanical Specifications

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070