1AB377220040-OPC Alcatel-Lucent Nokia® 1AB377220040 Compatible TAA 2.5GBase-DWDM SFP Transceiver C-Band 100GHz (SMF, 1558.98nm, 80km, LC, DOM, -40 to 85C) ### **Features** - SFF-8432 and SFF-8472 Compliance - Duplex LC Connector - Single-mode Fiber - Industrial Temperature -40 to 85 Celsius - Hot Pluggable - Metal with Lower EMI - Excellent ESD Protection - RoHS Compliant and Lead Free ## **Applications:** - Gigabit Ethernet over DWDM - 2x Fibre Channel - Access, Metro and Enterprise ### **Product Description** This Alcatel-Lucent Nokia® 1AB377220040 compatible SFP transceiver provides 2.5GBase-DWDM throughput up to 80km over single-mode fiber (SMF) using a wavelength of 1558.98nm via an LC connector. It is capable of withstanding rugged environments and can operate at temperatures between -40 and 85C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Alcatel-Lucent Nokia®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty. OptioConnect's transceivers are RoHS compliant and lead-free. # **Regulatory Compliance** - ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4 - ESD to the LC Receptacle: compatible with IEC 61000-4-3 - EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010 - Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2 - RoHS compliant with EU RoHS 2.0 directive 2015/863/EU ## Wavelength Guide (100GHz ITU-T Channel) | ITU Channel | Frequency (THZ) | Center Wavelength (nm) | |-------------|-----------------|------------------------| | 61 | 196.1 | 1528.77 | | 60 | 196.0 | 1529.55 | | 59 | 195.9 | 1530.33 | | 58 | 195.8 | 1531.12 | | 57 | 195.7 | 1531.90 | | 56 | 195.6 | 1532.68 | | 55 | 195.5 | 1533.47 | | 54 | 195.4 | 1534.25 | | 53 | 195.3 | 1535.04 | | 52 | 195.2 | 1535.82 | | 51 | 195.1 | 1536.61 | | 50 | 195.0 | 1537.40 | | 49 | 194.9 | 1538.19 | | 48 | 194.8 | 1538.98 | | 47 | 194.7 | 1539.77 | | 46 | 194.6 | 1540.56 | | 45 | 194.5 | 1541.35 | | 44 | 194.4 | 1542.14 | | 43 | 194.3 | 1542.94 | | 42 | 194.2 | 1543.73 | | 41 | 194.1 | 1544.53 | | 40 | 194.0 | 1545.32 | | 39 | 193.9 | 1546.12 | | 38 | 193.8 | 1546.92 | | 37 | 193.7 | 1547.72 | | 36 | 193.6 | 1548.51 | | 35 | 193.5 | 1549.32 | | 34 | 193.4 | 1550.12 | | 33 | 193.3 | 1550.92 | | 32 | 193.2 | 1551.72 | | 31 | 193.1 | 1552.52 | | 30 | 193.0 | 1553.33 | | 29 | 192.9 | 1554.13 | | 28 | 192.8 | 1554.94 | | 27 | 192.7 | 1555.75 | | 26 | 192.6 | 1556.55 | | 25 | 192.5 | 1557.36 | | 24 | 192.4 | 1558.17 | |----|-------|---------| | 23 | 192.3 | 1558.98 | | 22 | 192.2 | 1559.79 | | 21 | 192.1 | 1560.61 | | 20 | 192.0 | 1561.42 | | 19 | 191.9 | 1562.23 | | 18 | 191.8 | 1563.05 | ## **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Max. | Unit | |---------------------|--------|------|------|------| | Storage Temperature | TS | -5 | 70 | °C | | Relative Humidity | RH | 5 | 95 | % | | Supply Voltage | Vcc | -0.5 | 4.0 | V | # **Recommended Operating Conditions** | Parameter | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|----------------|-------|------|------|------| | Power Supply Voltage | Vcc | 3.13 | 3.30 | 3.45 | V | | Power Supply Current | Icc | | | 550 | mA | | Case Operating Temperature | T _A | -40 | | 85 | °C | | Data Rate | | 0.622 | | 2.67 | Gb/s | ## Electrical Characteristics (TOP=25°C, Vcc=3.3V) | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |--|--------|------|----------|------|-------|-------| | Transmitter | | | | | | | | Transmit Input Differential Voltage (TD +/-) | | 200 | | 2400 | mVp-p | 1 | | TX Disable-High | | 2.0 | | 3.45 | V | 4 | | TX Disable-Low | | 0 | | 0.8 | V | | | TX Fault Output Voltage-High | | 2.0 | | Vcc | V | 3 | | TX Fault Output Voltage-Low | | 0 | | 0.5 | V | | | Receiver | | | <u> </u> | | I | | | Recieve Input Differential Voltage (RD +/-) | | 600 | | 1200 | mVp-p | 2 | | Output Differential Impedance | Zout | 85 | 100 | 115 | ohms | | ## Notes: - 1. AC coupled and terminated to 100Ω differential load. - 2. Internally AC coupled, but requires a 100Ω differential termination or internal to Serializer/Deserializer - 3. Pulled up externally with a $4.7K\Omega$ - $10K\Omega$ resistor on the host board to VCCT,R. lo = 400μ A; Host Vcc. 4. Mod_Def1 and Mod_Def2 must be pulled up externally with a $4.7K\Omega$ - $10K\Omega$ resistor on the host board to VCCT,R.. # **Optical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |-----------------------------------|-----------------------|------|------|-------|------|-------| | Transmitter | | | | | | | | Channel Spacing | Δf | | 100 | | GHz | | | Wavelength Stability | Δλς | x0.1 | x | x+0.1 | nm | | | Average Output Power | Pout | 0 | | 4 | dB | | | Dispersion Penalty | | | | 3 | dB | | | Side Mode Suppression Ratio | SMSR | 30 | | | dB | | | Extinction Ratio | EX | 8.2 | | | dB | | | Spectral Width (-20dB) | | | | 0.3 | nm | | | Optical Rise/Fall Time (20%~~80%) | tr/tf | | | 160 | ps | | | Output Optical Eye | IUT-T G.957 Compliant | | | | | | | Receiver | | | | | | | | Receive Wavelength | С | 1528 | | 1564 | nm | | | Receiver Sensitivity | Se | | | -28 | dBm | 1 | | Receiver Overload | Pmax | -9 | | | dBm | | | LOS De-Assert | LOSD | | | -27 | dBm | | | LOS Assert | LOSA | -35 | | | dBm | | | LOS Hysteresis | | 0.5 | | 5 | dB | | # Notes 1. Measured with PRBS 2^{23} -1 test pattern, 2.48832Gb/s, EX=9dB, BER<10⁻¹². ## **Pin Descriptions** | Pin | Symbol | Name/Descriptions | Ref. | |-----|-------------|--|------| | 1 | VeeT | Transmitter Ground (Common with Receiver Ground) | | | 2 | TX Fault | Transmitter Fault Indication | 1 | | 3 | TX Disable | Transmitter Disable-Module. Laser output disables on high or open. | 2 | | 4 | MOD DEF (2) | Module Definition 2. Two wire serial ID interface. | 3 | | 5 | MOD_DEF (1) | Module Definition 1. Two wire serial ID interface. | 3 | | 6 | MOD_DEF (0) | Module Definition 0. Two wire serial ID interface. | 3 | | 7 | Rate Select | No connection required. | | | 8 | LOS | Loss of Signal indication. Logic 0 indicates normal operation. | 4 | | 9 | VeeR | Receiver Ground (Common with Transmitter Ground) | | | 10 | VeeR | Receiver Ground (Common with Transmitter Ground) | | | 11 | VeeR | Receiver Ground (Common with Transmitter Ground) | | | 12 | RD- | Receiver Inverted DATA out. AC Coupled. | 5 | | 13 | RD+ | Receiver Non-inverted DATA out. AC Coupled. | 5 | | 14 | VeeR | Receiver Ground (Common with Transmitter Ground) | | | 15 | VccR | Receiver Power Supply +3.3 V±5%. | 6 | | 16 | VccT | Transmitter Power Supply +3.3 V±5%. | 6 | | 17 | VeeT | Transmitter Ground (Common with Receiver Ground) | | | 18 | TD+ | Transmitter Non-Inverted DATA in. AC Coupled. | 7 | | 19 | TD- | Transmitter Inverted DATA in. AC Coupled. | 7 | | 20 | VeeT | Transmitter Ground (Common with Receiver Ground) | | ### Notes: - 1. TX Fault is open collector/drain output, which should be pulled up externally with a $4.7K-10K\Omega$ resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When high, this output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to <0.8V. - 2. TX Disable input is used to shut down the laser output per the state table below. It is pulled up within the module with a 4.7 10K resistor. Low (0 0.8V): Transmitter on Between (0.8V) and (0.8V): Undefined High (0.0 V): Transmitter Disabled Open: Transmitter Disabled - 3. Mod-Def 0, 1, 2. These are the module definition pins. They should be pulled up with a 4.7 10K resistor on the host board to supply less than VccT+0.3V or VccR+0.3V. Mod-Def 0, is grounded by the module to indicate that the module is present. Mod-Def 1 is clock line of two-wire serial interface for optional serial ID. Mod-Def 2 is data line of two-wire serial interface for optional serial ID. - 4. LOS (Loss of signal) is an open collector/drain output, which should be pulled up externally with a - 4.7 10K resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to<0.8V. - 5. RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω differential at the user SERDES. The AC coupling is done inside the module and thus not required on the host board. - 6. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP connector pin. The in-rush current will typically be no more than 30mA above steady state supply current after 500ns. - 7. TD-/+: These are the differential transmitter inputs. They are AC coupled differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on host board. SFP Transceiver Electrical Pad Layout # **Block Diagram** # **Mechanical Specifications** ## **EEPROM Information** EEPROM memory map specific data field description is as below: # **Regulatory Compliance** | Feature | Standard | Performance | |---|--|--| | Electrostatic Discharge (ESD) to the
Electrical Pins | MIL-STD-883E Method 3015.7 | Class 1 (>500 V) Isolation with the case | | Electromagnetic Interference (EMI) | FCC Part 15 Class B | Compatible with standards | | Laser Eye Safety | FDA 21CFR 1040.10 and 1040.11
EN60950, EN (IEC) 60825-1,2 | Compatible with Class 1 laser product. Compatible with TµV standards | | Component Recognition | UL and CUL | UL file E317337 | | Environmental | RoHS | RoHS6 | ## **OptioConnect** ## Innovation for the Future of High-Speed Networking ### Who We Are OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures. ### What We Do At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with: - Superior Performance - Network and traffic optimization - Intelligent energy management - Seamless OEM compatibility - Scalable cost-efficiency ## **Smarter Networks by Design** Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform. ## **Our Team** Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions. ## **Our Mission** To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world. ### **Let's Connect** Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com