3FE47548AA-AO Alcatel-Lucent Nokia® 3FE47548AA Compatible TAA Compliant 10GBs XGS-PON OLT Transceiver with Burst Mode (SMF, 1577nmTx/1270nmRx, SC, N1, DOM) #### **Features** - Dual Wavelength Bidirectional Transceiver - 1270nm Burst Mode APD/TIA Receiver - 1577nm CW Mode EML Transmitter - 2x10 SFP+ Die Cast Housing - SC/UPC Optical Interface - Single fiber needed - Commercial Temperature 0 to 70 Celsius - 3.3V DC Power Supply - RoHS compliant and Lead Free #### **Applications** - XGS-PON OLT - Access and Enterprise #### **Product Description** This Alcatel-Lucent Nokia® SFP+ transceiver provides XGS-N1/C+ throughput up to 20km over single-mode fiber (SMF) using a wavelength of 1577nmTx/1270nmRx via a SC connector. It is guaranteed to be 100% compatible with the equivalent Alcatel-Lucent Nokia® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty. AddOn's transceivers are RoHS compliant and lead-free. TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. — made or designated country end products." # **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Max. | Unit | |-------------------------------|--------|------|------|------| | Maximum Supply Voltage | Vcc | 0 | 3.6 | V | | Storage Ambient Temperature | Tstg | -40 | 85 | °C | | Operating Case Temperature | Тс | 0 | 70 | °C | | Relative Humidity - Storage | RHstg | 5 | 90 | % | | Relative Humidity - Operating | RHop | 5 | 85 | % | ## Note: Exceeding the Absolute Maximum Ratings may cause irreversible damage to the device. The device is not intended to be operated under the condition of simultaneous Absolute Maximum Ratings, a condition which may cause irreversible damage to the device. # **Absolute Maximum Ratings: Control Function Logic Levels** | Parameter | Symbol | Min. | Max. | Unit | Notes | |-------------------------------|-------------|------|---------|------|-------| | Tx_Disable | Tx_Disable | 0 | Vcc+0.5 | V | LVTTL | | Transmitter Fault | Tx_Fault | 0 | Vcc+0.5 | V | LVTTL | | Burst-Mode Signal Detect | Rx_SD | 0 | Vcc+0.5 | V | LVTTL | | Receive Reset | Rx_Reset | 0 | Vcc+0.5 | V | LVTTL | | Receive Data Rate Select | Rate_Select | 0 | Vcc+0.5 | V | LVTTL | | Digital RSSI Trigger Input | TRI | 0 | Vcc+0.5 | V | LVTTL | | 2-Wire Serial Interface Data | SDA | 0 | Vcc+0.5 | V | LVTTL | | 2-Wire Serial Interface Clock | SCL | 0 | Vcc+0.5 | V | LVTTL | | SCL Frequency | tscl | | 400 | KHz | | | Data Hold Time | tHD:DAT | 120 | | ns | | # **Electrical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |---|--------|----------|------|-------|------|-------| | Power Supply Voltage | Vcc | 3.135 | 3.30 | 3.465 | V | | | Power Supply Current | Icc | | 500 | 750 | mA | | | Transmitter | | | | | | | | Tx Differential Input Amplitude | VIN | 120 | | 820 | mV | | | Tx Differential Input Impendence | ZIN | 90 | 100 | 110 | Ω | | | Tx_Disable = High (Transmitter Off/Disabled) | VIH | 0.7*Vcc3 | | Vcc3 | V | 1 | | Tx_Disable = Low (Transmitter On/Enabled) | VIL | 0 | | 0.8 | V | 1 | | Tx_Fault = High (Fault) | VOH | 2.4 | | Vcc3 | V | 2 | | Tx_Fault = Low (Normal) | VOL | 0 | | 0.4 | V | 2 | | Receiver | | | | | | | | Rx Differential Output Impendence | ZOUT | 90 | 100 | 110 | Ω | | | Rx_Data Differential Output Voltage Amplitude | VOUT | 300 | | 800 | mV | LVCML | | Rx_SD = High | VOH | 2.4 | | Vcc3 | V | 2 | | Rx_SD = Low | VOL | 0 | | 0.4 | V | 2 | | Rx_Reset = High | VIH | 2.0 | | Vcc3 | V | 1 | | Rx_Reset = Low | VIL | 0 | | 0.8 | V | 1 | | Rate_Select = High | VIH | 2.0 | | Vcc3 | V | 1 | | Rate_Select = Low | VIL | 0 | | 0.8 | V | 1 | | TRI = High | VIH | 0.7*Vcc | | Vcc3 | V | 1 | | TRI = Low | VIL | 0 | | 0.8 | V | 1 | # Notes: - 1. LVTTL (Control Input). - 2. LVTTL (Monitor Output). # 2-Wire Serial Interface Logic | Parameter | Symbol | State | Logic | Min. | Max. | Unit | |-------------------------------|--------|-------|-------|---------|------|------| | 2-Wire Serial Interface Data | SDA | High | LVTTL | 0.7*Vcc | Vcc | V | | | SDA | Low | LVTTL | 0 | 0.8 | V | | 2-Wire Serial Interface Clock | SCL | High | LVTTL | 0.7*Vcc | Vcc | V | | | SCL | Low | LVTTL | 0 | 0.8 | V | # **Optical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |---|----------|------|--------------|-------|------|----------------| | Transmitter | | | | | | | | Transmitter Type | | | CW Mode EMI | - | | | | Coupling Mode | | | AC | | | | | Transmitter Signal Rate | Rate | | 9.953 | | Gbps | | | Average Launch Power | Pavg | 2 | | 5 | dBm | N1 | | Tolerance to the Transmitter Incident Light Power | | -15 | | | dB | | | Optical Center Wavelength | λC | 1575 | 1577 | 1580 | nm | | | Spectral Width | Δλ | | | 1 | nm | | | Side-Mode Suppression Mode | SMSR | 30 | | | dB | | | Extinction Ratio | ER | 8.2 | | | dB | | | Receiver | | | | | | | | Receiver Type | | Bur | st-Mode APD/ | TIA | | | | Optical Center Wavelength | λC | 1260 | 1270 | 1280 | nm | | | Damage Optical Power | | -3 | | | dBm | | | Receiver Sensitivity | S | | | -26 | dBm | @9.953Gbps, N1 | | | S | | | -27.5 | dBm | @2.488Gbps, N1 | | Receiver Optical Overload | PIN(SAT) | -5 | | | dBm | @9.953Gbps, N1 | | | PIN(SAT) | -7 | | | dBm | @2.488Gbps, N1 | | Reflectance of Rx | RL | | | -20 | dB | @1260-1360nm | | Dynamic Range | DR | 15 | | | dB | | | Immunity from Continuous Identical Digits | CID | 72 | | | Bits | | ## Notes: Sensitivity and Overload Test Conditions: - 1.9.953Gbps: BER@10⁻³, PRBS 2³¹-1, and ER=6.0dB. - 2.2.488Gbps: BER@10⁻⁴, PRBS 2²³-1, and ER=8.2dB. **Upstream Timing** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |---|-----------|------|------|------|------|-------| | Burst Receiver Settling Time | T_SETTLE | | | 100 | ns | | | Burst Signal Detect Assert | T_SDA | | 25 | 100 | ns | | | Burst Signal Detect De-Assert | T_SDD | | 100 | | ns | 1 | | Guard Time | Tg | 51.4 | | | ns | | | Reset Pulse Width | Tw | 25 | | | ns | | | Reset Time Overlapping Preamble | T_overlap | 0 | | | ns | 2 | | Setup Time of Rate Level for Following
Burst | T_setup | 5 | | | ns | | #### **Notes:** - 1. Auto reset function is applied. Signal detect de-assert time is about 100ns forced by auto reset and will short to about 20ns with external Reset pulse. - 2. Reset pulse is required to be partially inside the preamble. # **Upstream Timing Diagram** **Digital RSSI Sample/Hold Timing** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |----------------------------|------------------------------|------|------|------------------------------------|------|-------| | I ² C Read Time | Tp | 500 | | | μs | | | Optical Input Signal Width | Tont | 300 | | | ns | | | RSSI Monitor Range | Pmon | -30 | | -7 | dBm | | | RSSI Precision | Prssi | -3 | +/-2 | 3 | dB | | | RSSI Trigger Delay | T _{tri} (TRI Delay) | 0 | 300 | | ns | | | RSSI Trigger Width | T _{I2C} (TRI Width) | 500 | | T _{ont} -T _{tri} | ns | | Note: T_{tri}+T_{i2c}<T_{ont.} **Digital RSSI Sample/Hold Timing Diagram** # **Pin Descriptions** | Pin | Symbol | Name/Description | Note | |-----|--------------|--|------| | 1 | Rate_Select | Rate Select. Dedicated upstream speed indication. High=10G. Low=2.5G. | | | 2 | Tx_Fault | Transmitter Fault. Low = Normal Operation. High = Fault Indication. | | | 3 | Tx_Disable | Transmit Disable. Low = Normal Operation. High = Disables Module. | | | 4 | SDA | 2-Wire Serial Interface Data. | | | 5 | SCL | 2-Wire Serial Interface Clock. | | | 6 | MOD_ABS | Module Absent pin. Grounded inside the module. | | | 7 | Rx_Reset | Rx_Reset Pulse Input for TIA/LIA. | | | 8 | Rx_SD | Rx Signal Detect. Assert "high" when Burst Packet is coming. | | | 9 | RSSI_Trigger | Receiver Signal Strength Indication Trigger Input. | | | 10 | GND | Module Ground. | | | 11 | GND | Module Ground. | | | 12 | RD- | Receiver Inverted. 9.953Gbps and 2.488Gbps Data Output. DC coupled inside the module. | | | 13 | RD+ | Receiver Non-Inverted 9.953Gbps and 2.488Gbps Data Output. DC coupled inside the module. | | | 14 | GND | Module Ground. | | | 15 | Vcc | +3.3V DC Power Supply Input. | | | 16 | Vcc | +3.3V DC Power Supply Input. | | | 17 | GND | Module Ground. | | | 18 | TD+ | Transmitter Non-Inverted 9.953Gbps Data Input. | | | 19 | TD- | Transmitter Inverted 9.953Gbps Data Input. | | | 20 | GND | Module Ground. | | ## **Electrical Interface** #### **SFP+ Connector Dimensions** ## **Mechanical Specifications** # **EEPROM Information** EEPROM memory map-specific data field description is as below: | 2 | wire address 1010001X (A2h) | |-----------|--| | 55 | Alarm and Warning
Thresholds (56 bytes) | | | Cal Constants
(40 bytes) | | 95
119 | Real Time Diagnostic
Interface (24 bytes) | | 127 | Vendor Specific (8 bytes) | | | User Writable
EEPROM (120 bytes) | | 247 | | | 255 | Vendor Specific (8 bytes) | #### **About AddOn Networks** In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support. Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history. Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products. ## **U.S. Headquarters** Email: sales@addonnetworks.com Telephone: +1 877.292.1701 Fax: 949.266.9273 #### **Europe Headquarters** Email: salessupportemea@addonnetworks.com Telephone: +44 1285 842070