

QSFP-40GB-PSM4-BXD-40-AO

MSA and TAA 40GBase-BX QSFP+ Transceiver (SMF, 1330nmTx/1270nmRx, 40km, MPO, DOM)

Features

- Compliant with IEEE802.3cp 10GBASE-BR40-D
- Compliant with SFF-8636
- Compliant with QSFP+ MSA
- 8-degree, angled MPO12 single-mode fiber connector
- Commercial Temperature 0 to 70 Celsius
- Single-mode fiber
- Excellent ESD Protection
- Hot Pluggable
- RoHS compliant and lead-free
- Metal with lower EMI

Applications

- 40GBase-BX Ethernet
- Access, Metro and Enterprise

Product Description

This MSA Compliant QSFP+ transceiver provides 40GBase-BX throughput up to 40km over single-mode fiber (SMF) using a wavelength of 1330nmTx/1270nmRx via an MPO connector. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. — made or designated country end products."

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Supply Voltage	Vcc	3.135		3.465	V	
Storage Temperature	Tstg	-40		85	°C	
Case Operating Temperature	Тс	0		70	°C	
Aggregated Data Rate Per Transceiver	DR		41.24		Gbps	1
Bit Rate (NRZ)	DR		10.3125		Gbps	2
Supported Link Length	Lmax1			40	km	3

Notes:

- 1. All channels.
- 2. Per optical transceiver block.
- 3. Single-mode fiber per G.652.
- 4. Distances up to 40km are conditional to the loss budget of the link. Not to exceed 18dB (including fiber loss, connector, TDP, and so forth), as per IEEE 802.3 CP specifications.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Supply Voltage	Vcc	3.15		3.465	V	
Symbol Rate Per Lane	BR		10.3125		Gbps	±100ppm
Input Voltage - Low	VIL	-0.3		0.8	V	
Input Voltage - High	VIH	2		3.	V	
Output Voltage - Low	VOL	-0.3		0.8	V	
Output Voltage - High	VOH	2		3.	V	
Differential Data Input Per Lane	VIN,pp	70		900	mV	
Differential Data Output Per Lane	VOUT,pp	100		900	mV	1

Notes

1. Internally AC coupled but requires an external 100Ω differential load termination.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitter						
Launch Optical Power	Pavg	-3		+3	dBm	Per Lane
	Pavg			-30	dBm	1
Lane Center Tx WL for Each of the Four Channels	λ	1320	1330	1340	nm	2
Extinction Ratio	ER	5.5			dB	
OMA-TDP	OMA-TDP	-1			dBm	
Transmitter Dispersion Penalty	TDP			2.6	dB	
Side-Mode Suppression Ratio	SMSR	30			dB	
Optical Return Loss Tolerance	ORLT			21	dB	
Transmitter Reflectance				-12	dB	
Eye Mask Margin		10			%	
Eye Mask: (X1, X2, X3, Y1, Y2, Y3)	Mask	(0.25	(0.25, 0.4, 0.45, 0.25, 0.28, 0.4)			3
Receiver						
Lane Center Rx WL for Each of the Four Channels	λ	1260	1270	1280	nm	2
Unstressed Receiver Sensitivity (OMA)	RX-OMA	+2.5		-19	dBm	Per Lane
Stressed Receiver Sensitivity (OMA)	RX-Stress OMA			16.8	dBm	Per Lane
Average Receiver Power Per Lane	RXsense	-21.2		-7	dBm	
Damage Threshold	THd	-3			dBm	4
Reflectance				-26	dB	Per Lane
LOS De-Assert	LOSD			-22	dBm	
LOS Assert	LOSA	-35			dBm	5
LOS Hysteresis		0.5		4	dB	

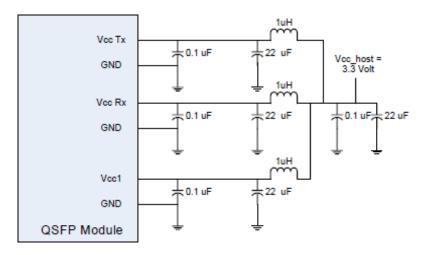
Note:

- 1. Per lane in "off" mode.
- 2. Built-in optical BiDi demux for Tx/Rx for each channel.
- 3. Hit ratio of 1x10⁻¹², per IEEE.
- 4. Continuous exposure without damage.
- 5. Rx_LOS is asserted if any of the network optical lanes have LOS.

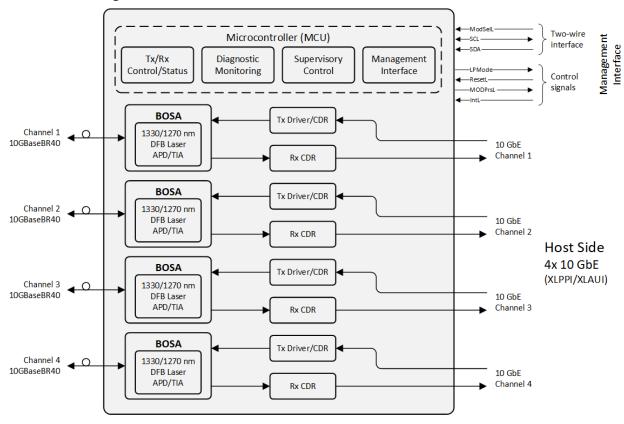
Pin Descriptions

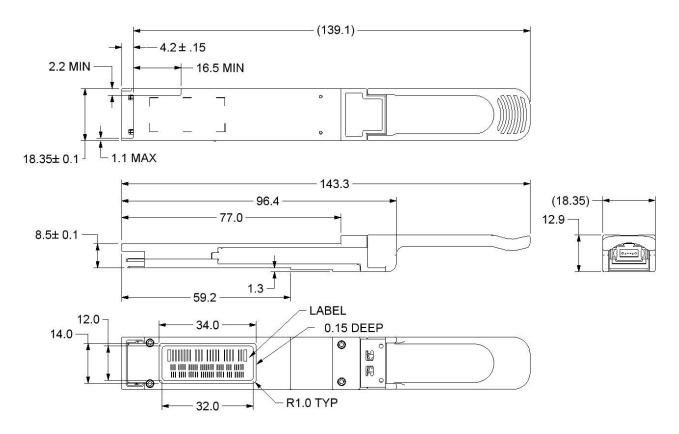

Pin	Logic	Symbol	Name/Description	Note
1		GND	Module Ground.	1
2	CML-I	Tx2-	Transmitter Inverted Data Input.	
3	CML-I	Tx2+	Transmitter Non-Inverted Data Input.	
4		GND	Module Ground.	1
5	CML-I	Tx4-	Transmitter Inverted Data Input.	
6	CML-I	Tx4+	Transmitter Non-Inverted Data Input.	
7		GND	Module Ground.	1
8	LVTTL-I	ModSelL	Module Select.	2
9	LVTTL-I	ResetL	Module Reset.	2
10		VccRx	+3.3V Receiver Power Supply.	
11	LVCMOS-I	SCL	2-Wire Serial Interface Clock.	2
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	2
13		GND	Module Ground.	1
14	CML-O	Rx3+	Receiver Non-Inverted Data Output.	
15	CML-O	Rx3-	Receiver Inverted Data Output.	
16		GND	Module Ground.	1
17	CML-O	Rx1+	Receiver Non-Inverted Data Output.	
18	CML-O	Rx1-	Receiver Inverted Data Output.	
19		GND	Module Ground.	1
20		GND	Module Ground.	1
21	CML-O	Rx2-	Receiver Inverted Data Output.	
22	CML-O	Rx2+	Receiver Non-Inverted Data Output.	
23		GND	Module Ground.	1
24	CML-O	Rx4-	Receiver Inverted Data Output.	1
25	CML-O	Rx4+	Receiver Non-Inverted Data Output.	
26		GND	Module Ground.	1
27	LVTTL-O	ModPrsL	Module Present. Internally pulled down to the GND.	
28	LVTTL-O	IntL	Interrupt Output. Should be pulled up on the host board.	2
29		VccTx	+3.3V Transmitter Power Supply.	
30		Vcc1	+3.3V Power Supply.	
31	LVTTL-I	LPMode	Low-Power Mode.	2
32		GND	Module Ground.	1
33	CML-I	Tx3+	Transmitter Non-Inverted Data Input.	
34	CML-I	Tx3-	Transmitter Inverted Data Input.	
35		GND	Module Ground.	1
36	CML-I	Tx1+	Transmitter Non-Inverted Data Input.	
37	CML-I	Tx1-	Transmitter Inverted Data Input.	
38		GND	Module Ground.	1

Notes:

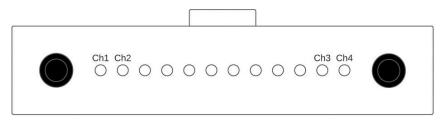

1. The module signal grounds are isolated from the module case.

2. This is an open collector/drain output that, on the host board, requires a $4.7k\Omega$ -10kΩ pull-up resistor to the Host_Vcc.


Electrical Pin-Out Details


Power Supply Filtering

Transceiver Block Diagram



Mechanical Specifications

Dimensions are in mm.

MPO12 Connector – Front View

Fibers 1, 2, 11, and 12 are used.

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070