

XFP-EPON-OLT-PR30B-I-OPC

MSA and TAA 10GBase-OLT XFP Transceiver (SMF, 1577nmTx/1270nmRx, 20km, SC, DOM, -40 to 85C, BEAD Compliant)

Features

- SC Optical Connector
- LVCML AC/DC Coupled Input and Output
- 1577nm CW Mode EML
- 1270nm Burst-Mode APD/TIA Receiver
- 3.3V DC Power Supply
- Hot-Pluggable
- Operating Temperature: 0 to 70 Celsius
- RoHS Compliant and Lead-Free

Applications:

- PON
- Broadband Access

Product Description

This MSA compliant XFP transceiver provides 10GBase-OLT throughput up to 20km over single-mode fiber (SMF) using a wavelength of 1577nmTx/1270nmRx via a SC connector. It can operate at temperatures between -40 and 85C. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Operating Case Temperature	Тс	-40	85	°C
Storage Temperature	Tstg	-40	85	
Relative Storage Humidity	RHstg	0	95	%
Relative Operating Humidity	RHo	0	85	%
Module Supply Voltage	Vcc	0	3.6	V

Notes:

1. Exceeding the Absolute Maximum Ratings may cause irreversible damage to the device. The device is not intended to be operated under the condition of simultaneous Absolute Maximum Ratings, a condition which may cause irreversible damage to the device.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Power Supply Current	Icc		650	1000	mA	
Transmitter						
Tx Differential Input Impendence	ZIN	90	100	110	Ω	
10Gbps Tx Differential Input Amplitude	VIN10	120		820	mV	
Tx_Disable = High (Transmitter Off/Disabled)	VTDH	2.0		Vcc ₃ +0.3	V	1
Tx_Disable = Low (Transmitter On/Enabled)	VTDL	0		0.8	V	1
Parameter						
Rx Differential Output Impendence	ZOUT	90	100	110	Ω	
10Gbps Rx_Data Differential Output Voltage Amplitude	VOUT10		700		mV	
10Gbps Output High Voltage	VOH10	Vcc ₃ -20	Vcc ₃ -5	Vcc ₃	mV	
10Gbps Output Low Voltage	VOL10	Vcc ₃ -400	Vcc₃-350	Vcc₃-300	mV	
Rx_LOS = High (Receiver Off)	VOH	2.0		Vcc +0.3	V	2
Rx_LOS = Low (Receiver On)	VOL	0		0.8	V	2
Control Function Logic Levels						
Tx_Disable	Tx_Dis	0		Vcc ₃ +0.5	V	3
Burst-Mode Loss of Signal	Rx_LOS	0		Vcc₃+0.5	V	3
Rx_RateSelect	Rx_RateSel	0		Vcc₃+0.5	V	4
Digital Rx_RSSI_Trigger Input	TRI	0		Vcc₃+0.5	V	4
I ² C Serial Data	SDA	0		Vcc₃+0.5	V	5
I ² C Serial Clock	SCL	0		Vcc₃+0.5	V	4

Notes:

- 1. LVTTL control input.
- 2. LVTTL monitor output.
- 3. LVTTL.
- 4. Single-ended LVTTL input.
- 5. Single-ended LVTTL I/O.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Laser Type			1577nm CW EML			
Downstream Signal Rate			10.3125		Gbps	
Average Launch Power	P	2		5	dBm	
Optical Center Wavelength	λ 10	1575	1577	1580	nm	
Spectral Width	Δλ 10			1	nm	
Side-Mode Suppression Ratio	SMSR ₁₀	30			dB	
Extinction Ratio	ER ₁₀	6			dB	
Output Eye Diagram		Compliant with IEEE802.3av				
Receiver						
Receiver Type		127	1270nm APD/TIA Receiver			
Upstream Signal Rate		10.3125			Gbps	
Optical Center Wavelength	λ	1260	1270	1280	nm	
Receiver Sensitivity	PIN			-28	dBm	
Receiver Optical Overload	P _{IN} (SAT)	-6			dBm	1
Damaged Input Optical Power	P _d	-5			dBm	1
Receiver Settling Time	Trx			800	ns	
Rx_LOS Assert	Pa	-45			dBm	
Rx_LOS De-Assert	P _d			-28.5	dBm	
Rx_LOS Hysteresis	Phy	0.5		5	dB	

Notes:

1. BER@10⁻³, PRBS 2³¹-1, and ER=6dB.

Pin Descriptions

Pin	Symbol	Name/Description	Notes
1	GND	Module Ground.	
2	1G_Tx+	Transmit Non-Inverted 1.25Gbps Data Input. AC coupled inside the module.	
3	1G_Tx-	Transmit Inverted 1.25Gbps Data Input. AC coupled inside the module.	
4	GND	Module Ground.	
5	Tx_Dis	Transmit Disable. When asserted "high," both 10Gbps and 1.25Gbps transmitters' output are turned off.	1
6	NC	Not Connected. Reserved for rate select for future use.	
7	GND	Module Ground.	
8	Vcc3	+3.3V Power Supply.	
9	Vcc3	+3.3V Power Supply.	
10	SCL	2-Wire Serial Interface Clock.	2
11	SDA	2-Wire Serial Interface Data.	2
12	MOD_ABS	Module Ground. "High" stands for "module is physically absent."	2
13	NC	Not Connected. Reserved for rate select for future use.	3
14	Rx_LOS	Rx Loss of Signal Indication Output.	2
15	GND	Module Ground.	
16	GND	Module Ground.	
17	10G_Rx-	Receive Burst-Mode Inverted 10.3125Gbps Data Output. DC coupled inside the module.	
18	10G_Rx+	Receive Burst-Mode Non-Inverted 10.3125Gbps Data Output. DC coupled inside the module.	
19	GND	Module Ground.	
20	1G_Rx-	Receive Burst-Mode Inverted 1.25Gbps Data Output. DC coupled inside the module.	
21	1G_Rx+	Receive Burst-Mode Non-Inverted 1.25Gbps Data Output. DC coupled inside the module.	
22	NC	Not Connected.	
23	Rx_RSSI_TRI	Receiver Signal Strength Indication Trigger Input for Digital RSSI. Digital RSSI can be read from I2C.	3
24	NC	Not Connected.	
25	NC	Not Connected.	
26	NC	Not Connected.	
27	GND	Module Ground.	
28	10G_Tx-	Transmit Inverted 10.3125Gbps Data Input. AC coupled inside the module.	
29	10G_Tx+	Transmit Non-Inverted 10.3125Gbps Data Input. AC coupled inside the module.	
30	GND	Module Ground.	

Notes:

- 1. Internal $4.7k\Omega$ to $10k\Omega$ pull-up to the Vcc3.
- 2. Shall be pulled up with $4.7k\Omega$ to $10k\Omega$ to a voltage between 3.15V and 3.6V on the host board.
- 3. A 200Ω resistance shall be put in series on the host board.

Pin Assignment

Electrical Interface

Digital RSSI Sample/Hold Timing

Parameter	Symbol	Min.	Max.	Unit
Operating Case Temperature	Тс	-40	85	°C
Storage Temperature	Tstg	-40	85	
Relative Storage Humidity	RHstg	0	95	%
Relative Operating Humidity	RHo	0	85	%
Module Supply Voltage	Vcc	0	3.6	V

Mechanical Specifications

XFP Connector Dimensions

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

