addon

OSFPRHS-800GB-2XSR4-AO

MSA and TAA 800GBase-2xSR4 PAM4 OSFP112 RHS Transceiver (MMF, 850nm, 50m, 2xMPO, DOM, CMIS 5.0)

Features

- Compliant with IEEE 802.3-2022: 8x100GBASE-VR1 Optical Interface
- VCSEL Transmitter and PIN PD Receiver
- Compliant with IEEE 802.3ck-2022: 8x100GAUI-1 C2M Electrical Interface
- Supports Both Ethernet and InfiniBand NDR
- OSFP MSA Compliant
- Supports 850Gbps
- Compliant with CMIS 5.0
- Dual MPO-12 Connector APC
- Class 1 Laser
- Operating Temperature: 0 to 70 Celsius
- RoHS Compliant and Lead-Free

• 800GBase Ethernet

This MSA compliant OSFP transceiver provides 800GBase-2xSR4 throughput up to 50m over multi-mode fiber (MMF) PAM4 using a wavelength of 850nm via a 2xMPO connector. It can operate at temperatures between 0 and 70C. All of our transceivers are built to comply with Multi-Source Agreement (MSA) standards and are uniquely serialized and tested for data-traffic and application to ensure seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	1
Power Supply Voltage	Vcc	-0.5		3.6	V	
Relative Humidity (Non-Condensing)	RH	5		85	%	
Data Input Voltage Differential	V _{DIP} -V _{DIN}			1	V	
Control Input Voltage	Vı	-0.3		Vcc+0.5	V	
Control Output Current	I ₀	-20		20	mA	
Signaling Speed Per Lane	DRL		53.125		GBd	
Operating Distance		2		50	m	1
Data Rate	DR		850		Gbps	

Notes:

1. 0.5m to 30m for OM3, 0.5m to 50m for OM4 and OM5, with FEC.

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage		Vcc	3.135	3.3	3.465	V	
Instantaneous Peak Current	at Hot Plug	I _{CC_IP}			6400	mA	
Sustained Peak Current at Ho	ot Plug	I _{CC_SP}			5328	mA	
Maximum Power Dissipation	ı	PD			16	W	
Maximum Power Dissipation	(Low-Power Mode)	PD _{LP}			2	W	
Control Input Voltage - High		VIH	Vcc*0.7		Vcc+0.3	V	
Control Input Voltage - Low		VIL	-0.3		Vcc*0.3	V	
2-Wire Serial Interface Clock Rate					400	kHz	
Power Supply Noise (1kHz to				66	mVp-p		
Transmitter (Module Input, 1	TP1)						
Differential Pk-Pk Input Volta	age Tolerance		750			mV	
Pk-Pk AC Common-Mode	Low-Frequency (VCM _{LF})		32			mV	
Voltage Tolerance	Full-Band (VCM _{FB})		80			mV	
Differential-Mode to Commo	n-Mode Return Loss	RLcd	802.3ck 120G-2		-2	dB	
Effective Return Loss		ERL	8.5			dB	
Differential Termination Mismatch					10	%	
Single-Ended Voltage Tolerance Range			-0.4		3.3	V	
DC Common-Mode Voltage Tolerance			-0.35		2.85	V	

Pk-Pk AC Common-Mode	Low-Frequency (VCM _{LF})				32	mV	
Voltage	Full-Band (VCM _{FB})				80	mV	
Differential Pk-Pk Output	Short-Mode				600	mV	
Voltage	Long-Mode				845	mV	
Eye Height		EH	15			mV	
Vertical Eye Closure	Vertical Eye Closure				12	dB	
Common-Mode to Different	Common-Mode to Differential-Mode Return Loss		802.3ck 120G-1		-1	dB	
Effective Return Loss	Effective Return Loss		8.5			dB	
Differential Termination Mismatch					10	%	
Transition Time			8.5			ps	
DC Common-Mode Voltage Tolerance			-0.35		2.85	V	

Electrical Low-Speed Control and Sense Signal Specifications

Parameter	Symbol	Min.	Max.	Unit	Notes
Module Output SCL and SDA	VOL	0	0.4	V	
Module Input SCL and SDA	VIL	-0.3	Vcc*0.3	V	
	VIH	Vcc*0.7	Vcc+0.5	V	
InitMode, ResetL, and ModSelL	VIL	-0.3	0.8	V	
	VIH	2	Vcc+0.3	V	
IntL	VOL	0	0.4	V	
	VOH	Vcc-0.5	Vcc+0.3	V	

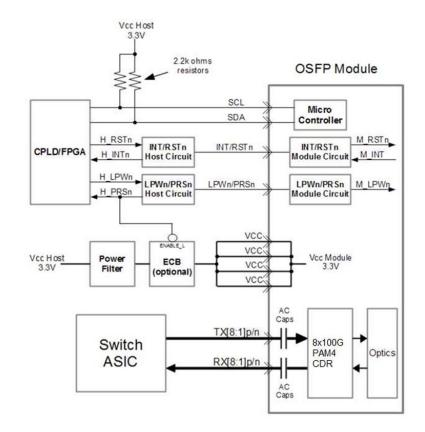
Optical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter							
Signaling Rate Per Lane (F	Signaling Rate Per Lane (Range)			5 ± 100ppm	1	GBd	
Wavelength		λC	844		860	nm	
RMS Spectral Width		RMS			0.65	dB	1
Average Launch Power Pe	r Lane	AOPL	-4.6		4.0	dBm	
Outer Optical Modulation Amplitude	(TECQ, TDECQ) <= 1.8 dB	OMAouter	-2.6		3.5	dBm	
(OMAouter) Per Lane	1.8< (TECQ, TDECQ) <= 4.4 dB		-4.4 + Max. (TECQ, TDECQ)				
Transmitter and Dispersio (TDECQ) Per Lane	n Eye Closure for PAM4	TDECQ			4.4	dB	
Transmitter Eye Closure fo	or PAM4 (TECQ) Per Lane	TECQ			4.4	dB	
Over/Under-Shoot					29	%	
Transmitter Power Excurs	ion Per Lane				2.3	dBm	
Average Launch Power of Off Transmitter Per Lane		Toff			-30	dBm	
Extinction Ratio	Extinction Ratio		2.5			dB	
Transmitter Transition Tin	ne	Tr			17	ps	
RIN ₁₄ OMA		RIN			-132	dB/Hz	
Optical Return Loss Tolerance		ORLT			14	dB	
Encircled Flux			>=86% at 19μm <=30% at 4.5μm				
Receiver				,			
Signaling Rate Per Lane (F	Range)		53.125 ± 100ppm		ı	GBd	
Wavelength		λC	840		860	nm	
Damage Threshold Per Lar	ne	AOP _D	5			dBm	
Average Receive Power Pe	er Lane	AOP _R	-6.3		4	dBm	
Receive Power (OMAoute	Receive Power (OMAouter) Per Lane				3.5	dBm	
Receiver Reflectance		RR			-15	dB	
Receiver Sensitivity (OMAouter)	TECQ < 1.4 dB	SOMA			-4.4	dBm	
(OlviAduter)	1.4 dB <=TECQ<=3.4 dB				-6.2+TECQ		
Stressed Receiver Sensitivity (OMAouter) Per Lane		SRS			-1.8	dBm	2
Conditions of Stressed Re	Conditions of Stressed Receiver Sensitivity Test						
Stressed Eye Closure for P Under Test	AM4 (SECQ) Per Lane	SECQ		4.4		dB	
OMAouter of Each Aggres	sor Lane			3.5		dB	

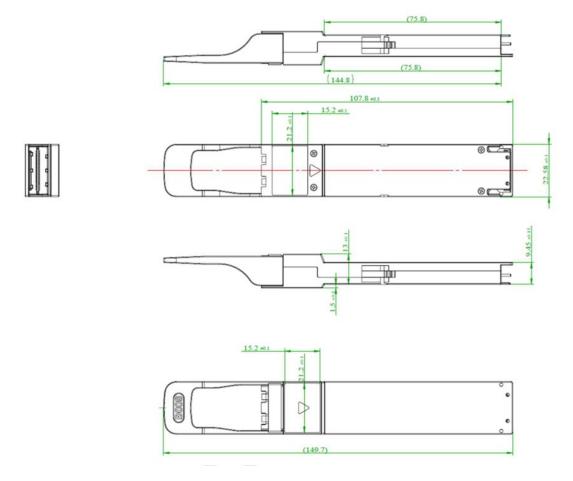
Notes:

- ${\bf 1.} \quad {\bf RMS} \ spectral \ width \ is \ the \ standard \ deviation \ of \ the \ spectrum.$
- 2. Measured with conformance test signal at TP3 for the BER = 2.4×10^{-4} .

Pin Descriptions


Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground.	
2	CML-I	Tx2+	Transmitter Non-Inverted Data.	
3	CML-I	Tx2-	Transmitter Inverted Data.	
4		GND	Module Ground.	
5	CML-I	Tx4+	Transmitter Non-Inverted Data.	
6	CML-I	Tx4-	Transmitter Inverted Data.	
7		GND	Module Ground.	
8	CML-I	Tx6+	Transmitter Non-Inverted Data.	
9	CML-I	Тх6-	Transmitter Inverted Data.	
10		GND	Module Ground.	
11	CML-I	Tx8+	Transmitter Non-Inverted Data.	
12	CML-I	Tx8-	Transmitter Inverted Data.	
13		GND	Module Ground.	
14	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	
15		Vcc	+3.3V Power Supply.	
16		Vcc	+3.3V Power Supply.	
17	Multi-Level	LPWn/PRSn	Low-Power Mode/Module Present.	
18		GND	Module Ground.	
19	CML-O	Rx7-	Receiver Inverted Data.	
20	CML-O	Rx7+	Receiver Non-Inverted Data.	
21		GND	Module Ground.	
22	CML-O	Rx5-	Receiver Inverted Data.	
23	CML-O	Rx5+	Receiver Non-Inverted Data.	
24		GND	Module Ground.	
25	CML-O	Rx3-	Receiver Inverted Data.	
26	CML-O	Rx3+	Receiver Non-Inverted Data.	
27		GND	Module Ground.	
28	CML-O	Rx1-	Receiver Inverted Data.	
29	CML-O	Rx1+	Receiver Non-Inverted Data.	
30		GND	Module Ground.	
31		GND	Module Ground.	
32	CML-O	Rx2+	Receiver Non-Inverted Data.	
33	CML-O	Rx2-	Receiver Inverted Data.	
34		GND	Module Ground.	
35	CML-O	Rx4+	Receiver Non-Inverted Data.	
36	CML-O	Rx4-	Receiver Inverted Data.	

37		GND	Module Ground.
38	CML-O	Rx6+	Receiver Non-Inverted Data.
39	CML-O	Rx6-	Receiver Inverted Data.
40		GND	Module Ground.
41	CML-O	Rx8+	Receiver Non-Inverted Data.
42	CML-O	Rx8-	Receiver Inverted Data.
43		GND	Module Ground.
44	Multi-Level	INT/RSTn	Module Input/Module Reset.
45		Vcc	+3.3V Power Supply.
46		Vcc	+3.3V Power Supply.
47	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.
48		GND	Module Ground.
49	CML-I	Тх7-	Transmitter Inverted Data.
50	CML-I	Tx7+	Transmitter Non-Inverted Data.
51		GND	Module Ground.
52	CML-I	Tx5-	Transmitter Inverted Data.
53	CML-I	Tx5+	Transmitter Non-Inverted Data.
54		GND	Module Ground.
55	CML-I	Tx3-	Transmitter Inverted Data.
56	CML-I	Tx3+	Transmitter Non-Inverted Data.
57		GND	Module Ground.
58	CML-I	Tx1-	Transmitter Inverted Data.
59	CML-I	Tx1+	Transmitter Non-Inverted Data.
60		GND	Module Ground.


Electrical Pad Layout

Top Side (viewed from top) Bottom Side (viewed from bottom) 60 GND GND 59 TX1p TX2p TX2n 58 TX1n 57 GND GND ТХ4р 5 56 TX3p 55 TX3n TX4n 6 54 GND GND ТХ5р 53 8 ТХбр 52 TX5n TX6n 9 51 GND GND 10 **Module Card Edge** 50 11 TX7p TX8p 49 TX7n TX8n 12 48 GND GND 13 47 SDA SCL 14 46 VCC VCC 15 45 VCC vcc 16 INT/RSTn LPWn/PRSn 44 17 43 GND GND 18 42 RX8n RX7n 19 41 RX8p RX7p 20 40 GND GND 21 RX6n RX5n 39 22 38 RX6p RX5p 23 37 GND GND 24 RX3n 25 36 RX4n 35 RX4p RX3p 26 34 GND GND 27 33 28 RX2n RX1n 32 RX2p RX1p 29 31 GND

Recommended OSFP Host Board Schematic

Mechanical Specifications

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070