

OSFP-800GB-2XDR4P-AO

MSA and TAA 800GBase-2xDR4+ PAM4 OSFP Transceiver (SMF, 1310nm, 2km, 2xMPO, DOM, CMIS 5.0)

Features

- Compliant with OSFP MSA Specifications
- Compliant with IEEE 802.3ck-2022: 8x100GAUI-1 C2M Electrical Interface
- Compliant with IEEE 802.3cu-2021: 8x100GBASE-FR1 Optical Interface
- 2-Wire Serial Interface with Digital Diagnostic Monitoring
- Operating Temperature: 0 to 70 Celsius
- Compliant with CMIS 5.0
- RoHS Compliant and Lead-Free
- Class 1 Laser

Applications

- 2x400GBase Ethernet
- 8x100GBase Ethernet

Product Description

This MSA compliant OSFP transceiver provides 800GBase-2xDR4+ throughput up to 2km over single-mode fiber (SMF) PAM4 using a wavelength of 1310nm via a 2xMPO connector. It can operate at temperatures between 0 and 70C. All of our transceivers are built to comply with Multi-Source Agreement (MSA) standards and are uniquely serialized and tested for data-traffic and application to ensure seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Power Supply Voltage	Vcc	-0.5		3.6	V	
Relative Humidity (Non-Condensing)	RH	5		95	%	
Data Input Voltage Differential	V _{DIP} -V _{DIN}			1	V	
Control Input Voltage	Vı	-0.3		Vcc+0.5	V	
Control Output Current	I ₀	-20		20	mA	
Signaling Speed Per Lane	DRL		53.125		GBd	
Operating Distance		2		2000	m	

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage		Vcc	3.135	3.3	3.465	V	
Instantaneous Peak Current at Hot Plug		ICC_IP			6600	mA	
Sustained Peak Current at Ho	ot Plug	Icc_ _{SP}			5494.5	mA	
Maximum Power Dissipation	ı	PD			16.5	W	
Maximum Power Dissipation	(Low-Power Mode)	PD _{LP}			2	W	
Control Input Voltage - High		VIH	Vcc*0.7		Vcc+0.3	V	
Control Input Voltage – Low		VIL	-0.3		Vcc*0.3	V	
2-Wire Serial Interface Clock	Rate				400	kHz	
Power Supply Noise (1kHz to	1MHz, Pk-Pk)				66	mVp-p	
Transmitter (TP1)							
Differential Pk-Pk Input Volta	age Tolerance		750			mV	
Pk-Pk AC Common-Mode	Low-Frequency (VCM _{LF})				32	mV	
Voltage Tolerance	Full-Band (VCM _{FB})				80	mV	
Differential-Mode to Commo	on-Mode Return Loss	RLCd	802.3ck 120G-2		-2	dB	
Effective Return Loss		ERL	8.5			dB	
Differential Termination Mis	match				10	%	
Single-Ended Voltage Tolera	nce Range		-0.4		3.3	V	
DC Common-Mode Voltage	Tolerance		-0.35		2.85	V	
Receiver (TP4)							
Pk-Pk AC Common-Mode	Low-Frequency (VCM _{LF})				32	mV	
Voltage	Full-Band (VCM _{FB})				80	mV	
Differential Pk-Pk Output	Short-Mode				600	mV	
Voltage	Long-Mode				845	mV	

Eye Height	EH	15			mV	
Vertical Eye Closure	VEC			12	dB	
Common-Mode to Differential-Mode Return Loss	RLDc	802.3ck 120G-1		·1	dB	
Effective Return Loss	ERL	8.5			dB	
Differential Termination Mismatch				10	%	
Transition Time		8.5			ps	
DC Common-Mode Voltage Tolerance		-0.35		2.85	V	

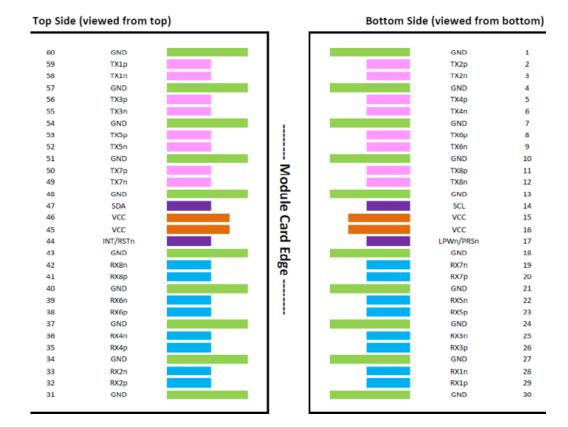
Electrical Low-Speed Control and Sense Signal Specifications

Parameter	Symbol	Min.	Max.	Unit	Notes
Module Output SCL and SDA	VOL	0	0.4	V	
Module Input SCL and SDA	VIL	-0.3	Vcc*0.3	V	
	VIH	Vcc*0.7	Vcc+0.5	V	
InitMode, ResetL, and ModSelL	VIL	-0.3	0.8	V	
	VIH	2	Vcc+0.3	V	
IntL	VOL	0	0.4	V	
	VOH	Vcc-0.5	Vcc+0.3	V	

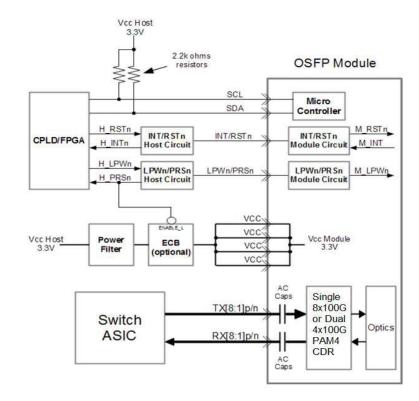
Optical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter							
Wavelength		λC	1304.5	1311	1317.5	nm	
Side-Mode Suppression Ratio		SMSR	30			dB	
Average Launch Power Pe	r Lane	AOPL	-3.1		4.0	dBm	1
Outer Optical	TDECQ<1.4dB	OMAouter	-0.1		4.2	dBm	
Modulation Amplitude (OMAouter) Per Lane	1.4dB≤TDECQ≤3.4dB	1	-1.5 + TDECQ				
Transmitter and Dispersion (TDECQ) Per Lane	Eye Closure for PAM4	TDECQ			3.4	dB	
Transmitter Eye Closure fo	r PAM4 (TECQ) Per Lane	TECQ			3.4	dB	
TDECQ - TECQ					2.5	dB	
Over/Under-Shoot					22	%	
Transmitter Power Excursi	on				2	dBm	
Average Launch Power of Off Transmitter Per Lane		Toff			-15	dBm	
Extinction Ratio	Extinction Ratio		3.5			dB	
Transmitter Transition Tim	Transmitter Transition Time				17	ps	
RIN _{17.1} OMA		RIN			-136	dB/Hz	
Optical Return Loss Tolera	nce	ORLT			17.1	dB	
Transmitter Reflectance		TR			-26	dB	2
Receiver							
Wavelength		λC	1304.5	1311	1317.5	nm	
Damage Threshold Per Lar	e	AOP _D	5			dBm	
Average Receive Power Pe	r Lane	AOP _R	-7.1		4	dBm	
Receive Power (OMAoute) Per Lane	OMA _R			4.2	dBm	
Receiver Reflectance		RR			-26	dB	
Receiver Sensitivity	TECQ<1.4dB	SOMA			-4.5	dBm	3
(OMAouter)	1.4dB≤TECQ≤3.4dB	1			-5.9 + TECQ	1	
Stressed Receiver Sensitivity (OMAouter) Per Lane		SRS			-2.5	dBm	4
Conditions of Stressed Re	ceiver Sensitivity Test						
Stressed Eye Closure for Pa Under Test	SECQ		3.4		dB		

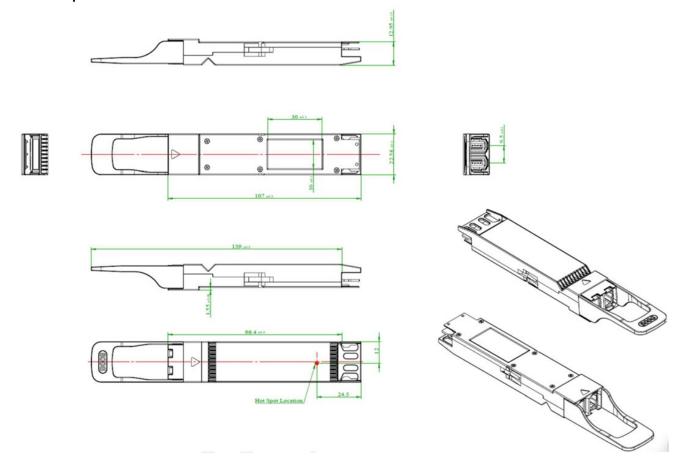
Notes:


- 1. Average launch power, per lane (minimum), is informative and not the principal indicator of signal strength.
- 2. Transmitter reflectance is defined looking into the transmitter.
- 3. Receiver sensitivity (OMAouter) per lane (maximum) is informative and is defined for a transmitter with a value of SECQ up to 3.4dB.
- 4. Measured with conformance test signal at TP3 for the BER = 2.4×10^{-4} .

Pin Descriptions


Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground.	
2	CML-I	Tx2+	Transmitter Non-Inverted Data.	
3	CML-I	Tx2-	Transmitter Inverted Data.	
4		GND	Module Ground.	
5	CML-I	Tx4+	Transmitter Non-Inverted Data.	
6	CML-I	Tx4-	Transmitter Inverted Data.	
7		GND	Module Ground.	
8	CML-I	Tx6+	Transmitter Non-Inverted Data.	
9	CML-I	Tx6-	Transmitter Inverted Data.	
10		GND	Module Ground.	
11	CML-I	Tx8+	Transmitter Non-Inverted Data.	
12	CML-I	Тх8-	Transmitter Inverted Data.	
13		GND	Module Ground.	
14	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	
15		Vcc	+3.3V Power Supply.	
16		Vcc	+3.3V Power Supply.	
17	Multi-Level	LPWn/PRSn	Low-Power Mode/Module Present.	
18		GND	Module Ground.	
19	CML-O	Rx7-	Receiver Inverted Data.	
20	CML-O	Rx7+	Receiver Non-Inverted Data.	
21		GND	Module Ground.	
22	CML-O	Rx5-	Receiver Inverted Data.	
23	CML-O	Rx5+	Receiver Non-Inverted Data.	
24		GND	Module Ground.	
25	CML-O	Rx3-	Receiver Inverted Data.	
26	CML-O	Rx3+	Receiver Non-Inverted Data.	
27		GND	Module Ground.	
28	CML-O	Rx1-	Receiver Inverted Data.	
29	CML-O	Rx1+	Receiver Non-Inverted Data.	
30		GND	Module Ground.	
31		GND	Module Ground.	
32	CML-O	Rx2+	Receiver Non-Inverted Data.	
33	CML-O	Rx2-	Receiver Inverted Data.	
34		GND	Module Ground.	
35	CML-O	Rx4+	Receiver Non-Inverted Data.	
36	CML-O	Rx4-	Receiver Inverted Data.	

37		GND	Module Ground.	
38	CML-O	Rx6+	Receiver Non-Inverted Data.	
39	CML-O	Rx6-	Receiver Inverted Data.	
40		GND	Module Ground.	
41	CML-O	Rx8+	Receiver Non-Inverted Data.	
42	CML-O	Rx8-	Receiver Inverted Data.	
43		GND	Module Ground.	
44	Multi-Level	INT/RSTn	Module Input/Module Reset.	
45		Vcc	+3.3V Power Supply.	
46		Vcc	+3.3V Power Supply.	
47	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	
48		GND	Module Ground.	
49	CML-I	Tx7-	Transmitter Inverted Data.	
50	CML-I	Tx7+	Transmitter Non-Inverted Data.	
51		GND	Module Ground.	
52	CML-I	Tx5-	Transmitter Inverted Data.	
53	CML-I	Tx5+	Transmitter Non-Inverted Data.	
54		GND	Module Ground.	
55	CML-I	Тх3-	Transmitter Inverted Data.	
56	CML-I	Tx3+	Transmitter Non-Inverted Data.	
57		GND	Module Ground.	
58	CML-I	Tx1-	Transmitter Inverted Data.	
59	CML-I	Tx1+	Transmitter Non-Inverted Data.	
60		GND	Module Ground.	


Electrical Pad Layout

Recommended OSFP Host Board Schematic

Mechanical Specifications

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070