

SFP-32GBASE-LW-OPC

MSA and TAA 32GBase-LW FC SFP+ Transceiver (SMF, 1310nm, 10km, LC, DOM)

Features

- SFF-8432 and SFF-8472 Compliance
- Duplex LC Connector
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 32GBase Fibre Channel
- Access and Enterprise

Product Description

This MSA compliant SFP+ transceiver provides 32GBase-LW Fibre Channel throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It can operate at temperatures between 0 and 70C. All of our transceivers are built to comply with Multi-Source Agreement (MSA) standards and are uniquely serialized and tested for data-traffic and application to ensure seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5	4.0	V
Storage Temperature	TS	-40	85	°C
Operating Case Temperature	Тс	0	70	°C
Operating Humidity (Non-Condensing)	RH	5	85	%
Maximum Bitrate	B _{max}	8.5	28.05	Gbps
Bit Error Rate	BER		10-12	
			10-6	

Electrical Characteristics (T_A, VCC = 3.15 to 3.46 Volts)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	9	Vcc	3.15		3.46	V	
Power Supply Curren	t	Icc			400	mA	1
Power Consumption		P _{DISS}			1.5	W	
Transmitter							
2.00	28.05Gbps	Vin,pp	250		900	mV	
Differential data input swing	14.025Gbps & 8.5Gbps	Vin,pp	180		700	mV	
Input differential impedance		Zin		100		Ω	2
Inner Eye Height		EH6	50			mV	3
Transmit Disable Voltage		VD	2		Vcc	V	4
Transmit Enable Voltage		VEN	Vee		Vee+0.8	V	
Receiver							
Single ended data output swing		Vout, pp	185		425	mV	5
Output differential impedance		Zin		100		Ω	
LOS Fault		VLOS fault	2		VccHOST	V	6
LOS Normal		VLOS norm	Vee		Vee+0.8	V	6
Power Supply Rejection		PSR	100			mVpp	7

Notes:

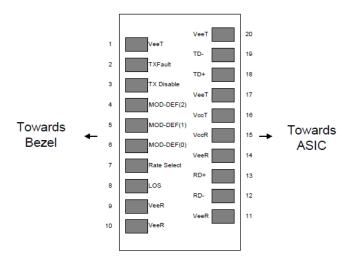
- 1. With established link, the total power dissipation shall not exceed 1.3W.
- 2. Connected directly to TX data input pins. AC coupling from pins into CDR, BER contour 10⁻⁶, per FC-PI 6 and FC-MSQS-2.
- 3. Inner eye height (EH6) for high loss case
- 4. Or open circuit.
- 5. Into 100 ohms differential termination.
- 6. LOS is an open collector output. Should be pulled up with 4.7k 10kohms on the host board. Normal operation is logic 0; loss of signal is logic 1. Maximum pull-up voltage is 5.5V.
- 7. Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.

Optical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter							
Optical Power (average) 28.05Gbps/ 14.025Gbps 8.5Gbps		P _{OUT}	-5		+2.0	dBm	1,2
		P _{OUT}	-8.4		+2.0	dBm	1
28.05Gbps		OMA	631 (-2.0)		(+3)	μW(dBm)	
Optical Modulation amplitude (OMA)	14.025Gbps	OMA	631 (-2.0)		(+3)	μW(dBm)	
8.5Gbps		OMA	290 (-5.4)		(+3)	μW(dBm)	
28.05Gbps		ER	4			dB	
Optical Extinction Ra	14.025Gbps/ 8.5Gbps	ER	3.5			dB	
Optical Wavelength		λ	1295		1325	nm	
Spectral Width (-20dB)		σ			1	nm	
Side Mode Suppression Ratio			30			dB	
	28.05Gbps	TDP			2.7	dB	
Transmitter Dispersion Penalty	14.025Gbps	TDP			4.4	dB	
,	8.5Gbps	TDP			3.2	dB	
Relative Intensity	28.05Gbps/ 14.025Gbps	RIN			-130	dB/Hz	
Noise	8.5Gbps	RIN			-128	dB/Hz	
Receiver							
Average Receiver Power		RxMAX			2	dBm	
28.05Gbps		RxSENS			-11.4	dBm	3
Unstressed Receiver Sensitivity (OMA)	14.025Gbps	RxSENS			-12.0	dBm	3
	8.5Gbps	RxSENS			-13.8)	dBm	3
Optical Return Loss	28.05Gbps		26			dB	
	14.025Gbps/ 8.5Gbps		12			dB	
LOS De-Assert		LOS _D			-17	dBm	
LOS Assert		LOS _A	-30			dBm	
LOS Hysteresis			0.5			dB	

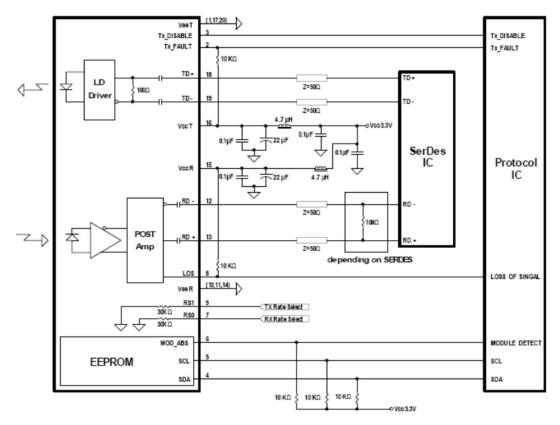
Notes:

- 1. Class 1 Laser Safety limit per FDA/CDRH, and EN (IEC) 60825 laser safety standards.
- 2. 3200-SM-LC-L OMA in dBm shall also exceed -5.0 TDP.
- 3. For 32GFC with FEC, receiver sensitivity is defined at 10^{-6} BER level, not 10^{-12} BER level.

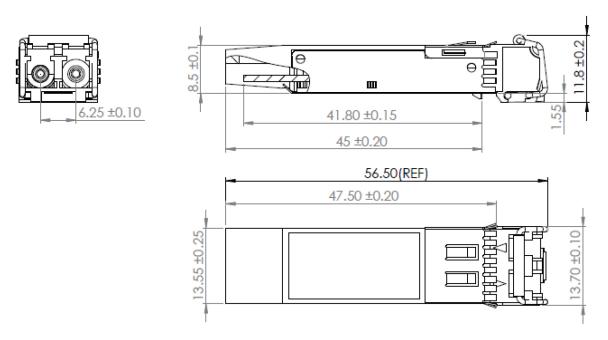

Pin Descriptions

Pin	Symbol	Name/Descriptions	Ref.
1	VEET	Transmitter Ground (Common with Receiver Ground)	1
2	TFAULT	Transmitter Fault.	2
3	TDIS	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line (MOD-DEF2)	4
5	SCA	2-wire Serial Interface Clock (MOD-DEF1)	4
6	MOD_ABS	Module Absent, connected to V _{EET} or V _{EER}	4
7	RS0	Rx Rate Select: Open or Low = 8.5 or 14.025 Gb/s Fibre Channel (Low Bandwidth) High = 28.05 Gb/s Fibre Channel (High Bandwidth)	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	6
9	RS1	Tx Rate Select: Open or Low = 8.5 or 14.025 Gb/s Fibre Channel (Low Bandwidth) High = 28.05 Gb/s Fibre Channel (High Bandwidth)	5
10	VEER	Receiver Ground (Common with Transmitter Ground)	1
11	VEER	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	VEER	Receiver Ground (Common with Transmitter Ground)	1
15	VCCR	Receiver Power Supply	
16	VCCT	Transmitter Power Supply	
17	VEET	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	VEET	Transmitter Ground (Common with Receiver Ground)	1

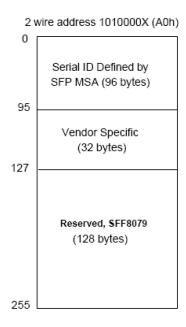
Notes:


- 1. Circuit ground is internally isolated from chassis ground.
- 2. T_{FAULT} is an open collector/drain output, which should be pulled up with a 4.7k 10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on $T_{DIS} > 2.0V$ or open, enabled on $T_{DIS} < 0.8V$.
- 4. Should be pulled up with 4.7k 10kohms on host board to a voltage between 2.0V and 3.6V. MOD_ABS pulls line low to indicate module is plugged in.
- 5. Rate select can also be set through the 2-wire bus in accordance with SFF-8472 v. 12.1c. Rx Rate Select is set at Bit 3, Byte 110, Address A2h. Tx Rate Select is set at Bit 3, Byte 118, Address A2h. Note: writing a

- "1" selects maximum bandwidth operation. Rate select is the logic OR of the input state of Rate Select Pin and 2-wire bus.
- 6. LOS is open collector output. Should be pulled up with 4.7k 10kohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.


Pin-out of connector Block on Host board

Recommended Circuit Schematic


Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

EEPROM Information

EEPROM memory map specific data field description is as below:

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

