

SFP-1M-BX43-D-I-AO

MSA and TAA 100Base-BX SFP Transceiver (SMF, 1490nmTx/1310nmRx, 10km, LC, DOM, -40 to 85C)

Features

- INF-8074 and SFF-8472 Compliance
- Simplex LC Connector
- Industrial Temperature -40 to 85 Celsius
- Single-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

Applications

- 100Base Ethernet
- Access and Enterprise

Product Description

This MSA compliant SFP transceiver provides 100Base-BX throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1490nmTx/1310nmRx via an LC connector. This bidirectional unit must be used with another transceiver or network appliance of complementing wavelengths. It is capable of withstanding rugged environments and can operate at temperatures between -40 and 85C. All of our transceivers are built to comply with Multi-Source Agreement (MSA) standards and are uniquely serialized and tested for data-traffic and application to ensure seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5		4.5	V	
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	-40		85	°C	
Operating Relative Humidity	RH	5		85	%	
Power Supply Current	Icc			300	mA	
Data Rate			155		Mbps	

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Supply Voltage		Vcc	3.13	3.3	3.47	V	
9μm Core Diameter SMF		L		20		km	
Tx_Disable Negate Time		t_on			1	ms	
Tx_Enable Assert Time		t_off			10	μs	
Time to Initialize (Including Reset of Tx_Fault)		t_int			300	ms	
Tx_Fault Assert Time		t_fault			100	μs	
Tx_Disable to Rese	et	t_reset	10			μs	
LOS Assert Time		t_loss_on			100	μs	
LOS De-Assert Tim	LOS De-Assert Time				100	μs	
Serial ID Clock Rate		f_serial_clock			400	kHz	
MOD_DEF(0:2) – High		VH	2		Vcc	V	
MOD_DEF(0:2) – Low		VL			0.8	V	
Tx_Disable	Disable		2.0		Vcc	V	
	Enable		0		0.8	V	
Tx_Fault	Fault		2.0		Vcc	V	
	Normal		0		0.8	V	

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Center Wavelength	λC	1470	1490	1510	nm	
Spectral Width (-20dB)	Δλ			1	nm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Average Output Power	POUT	-12		16	dBm	
Extinction Ratio	ER	9			dB	1
Rise/Fall Time (20-80%)	Tr/Tf			1.3	ns	
Data Input Swing Differential	VIN	400		1800	mV	
Input Differential Impedance	ZIN	90	100	110	Ω	
Output Optical Eye	IUT-T G.957 Compliant					
Receiver						
Center Wavelength	λC	1260	1310	1360	nm	
Receiver Sensitivity	Pmin			-32	dBm	
Receiver Overload	Pmax	-3			dBm	
LOS De-Assert	LOSD			-32	dBm	
LOS Assert	LOSA	-45			dBm	
LOS Hysteresis		1			dB	
Data Output Swing Differential	VOUT	400		1800	mV	
LOS	High	2.0		Vcc	V	
	Low			0.8	V	

Notes:

1. Measured with a PRBS 2^{23} -1 test pattern @155Mbps and BER \leq 1x10 $^{-10}$.

Pin Descriptions

Pin	Symbol	Name/Description	Plug Seq.	Notes
1	VeeT	Transmitter Ground.	1	5
2	Tx_Fault	Transmitter Fault Indication.	3	1
3	Tx_Disable	Transmitter Disable. Module disables on "high" or "open."	3	2
4	MOD_DEF2	Module Definition 2. 2-Wire Serial ID Interface.	3	3
5	MOD_DEF1	Module Definition 1. 2-Wire Serial ID Interface.	3	3
6	MOD_DEF0	Module Definition 0. Grounded within the module.	3	3
7	Rate Select	Not Connected. Function not available.	3	
8	LOS	Loss of Signal.	3	4
9	VeeR	Receiver Ground.	1	5
10	VeeR	Receiver Ground.	1	5
11	VeeR	Receiver Ground.	1	5
12	RD-	Inverse Received Data Out.	3	6
13	RD+	Received Data Out.	3	7
14	VeeR	Receiver Ground.	1	5
15	VccR	3.3±5% Receiver Power.	2	7
16	VccT	3.3±5% Transmitter Power.	2	7
17	VeeT	Transmitter Ground.	1	5
18	TD+	Transmitter Data In.	3	8
19	TD-	Inverse Transmitter Data In.	3	8
20	VeeT	Transmitter Ground.	1	5

Notes:

- 1. Tx_Fault is an open collector/drain output that should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board. Pull-up voltage between 2.0V and VccT/R+0.3V. When "high," output indicates a laser fault of some kind. "Low" indicates normal operation. In the "low" state, the output will be pulled to <0.8V.
- 2. Tx_Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\Omega$ to $10k\Omega$ resistor. Its states are:

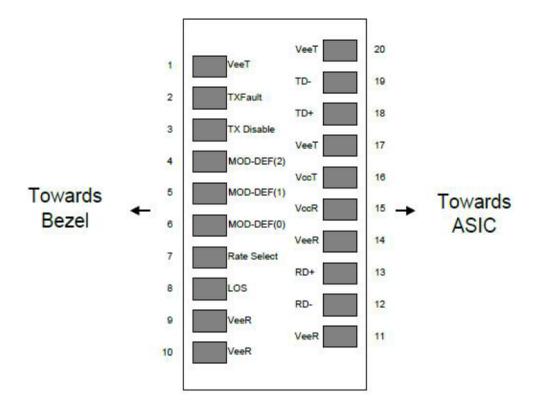
Low (0V - 0.8V): Transmitter On.

(0.8V and 2.0V): Undefined.

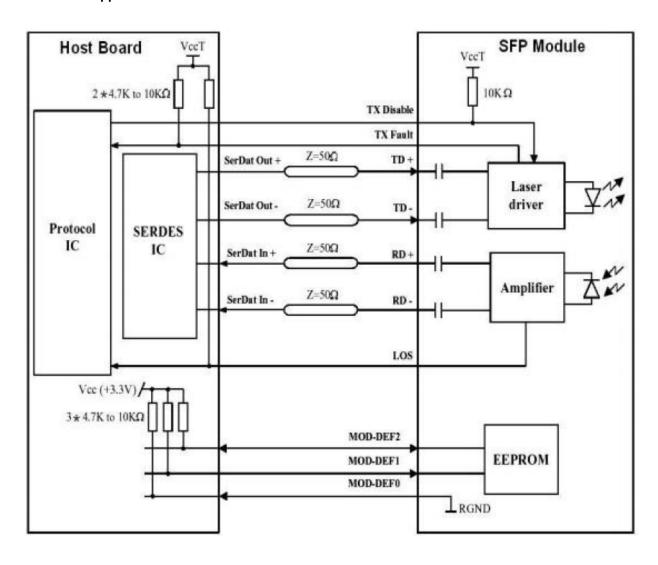
High (2.0V – 3.465V): Transmitter Disabled.

Open: Transmitter Disabled.

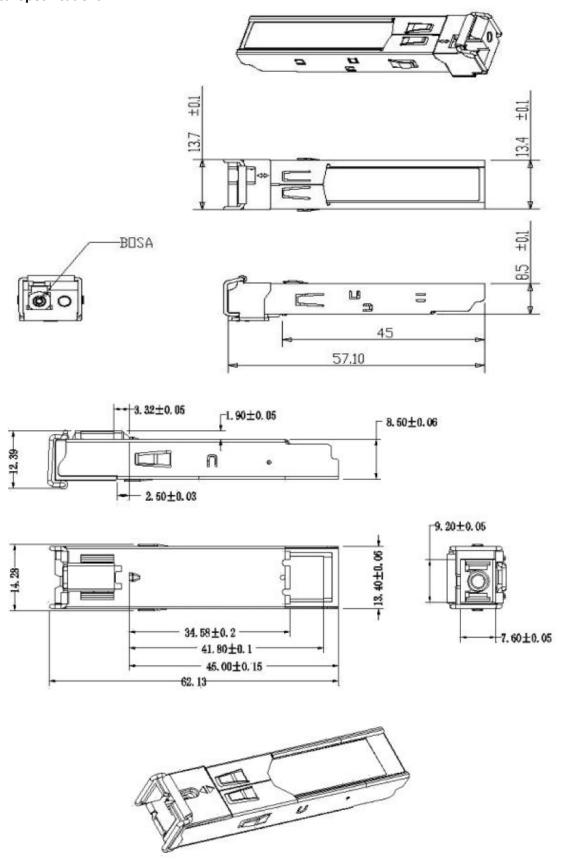
3. MOD_DEF0, 1, & 2. These are the module definition pins. They should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.


MOD_DEFO is grounded by the module to indicate that the module is present.

MOD_DEF1 is the clock line of the 2-wire serial interface for optional serial ID.


MOD_DEF2 is the data line of the 2-wire serial interface for optional serial ID.

- 4. LOS (Loss of Signal) is an open collector/drain output that should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor. Pull-up voltage between 2.0V and VccT/R+0.3V. When "high," this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). "Low" indicates normal operation. In the "low" state, the output will be pulled to <0.8V. VeeR and VeeT may be internally connected within the SFP module.
- 5. RD-/+. These are the differential receiver outputs. They are AC-coupled, 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.
- 6. VccR and VccT are the receiver and transmitter power supplies. They are defined as $3.3V\pm5\%$ at the SFP connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1Ω should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply filtering network is used, hot-plugging of the SFP transceiver module will result in an in-rush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP transceiver module.
- 7. TD-/+. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100 differential terminations inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 400mV to 2000mV (200mV to 1000mV single-ended).


Pin Connectors

Recommended Application Interface Circuit

Mechanical Specifications

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070