

FTLF1323P1BTR-C

Finisar® FTLF1323P1BTR Compatible TAA Compliant OC-3-IR SFP Transceiver (SMF, 1310nm, 10km, LC)

Features:

- INF-8074 and SFF-8472 Compliance
- Duplex LC Connector
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- OC-3 Transmission
- Access and Enterprise

Product Description

This Finisar® FTLF1323P1BTR compatible SFP transceiver provides OC-3 (155mbps) transmission rates for up to 10km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Finisar® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. It is built to meet or exceed the specifications of Finisar®, as well as to comply with MSA (Multi-Source Agreement) standards to ensure seamless network integration. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit
Maximum Supply Voltage	V _{CC}	-0.5		3.6	V
Storage Temperature	T _S	-40		+85	°C
Operating Case Temperature	T _C	0		70	°C
Operating Humidity	RH	5		95	%
Receiver Power	R _{MAX}			-8	dBm
Data Rate			100/155		Mbps

Electrical Characteristics (TOP=25°C, V_{CC}=3.3Volts)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Power Supply Voltage	V _{CC}	3.15	3.30	3.45	V	
Power Supply Current	I _{CC}			300	mA	
Power Consumption	P _{DISS}			800	mW	
Transmitter						
Single ended data input swing	V _{IN,PP}	400		2000	mVpp	1
Input differential impedance	Z _{IN}	85	100	120	Ω	2
Receiver						
Single ended data output swing	V _{OUT,PP}	400		2000	mVpp	1
Output differential impedance	Z _{IN}	85	100	120	Ω	

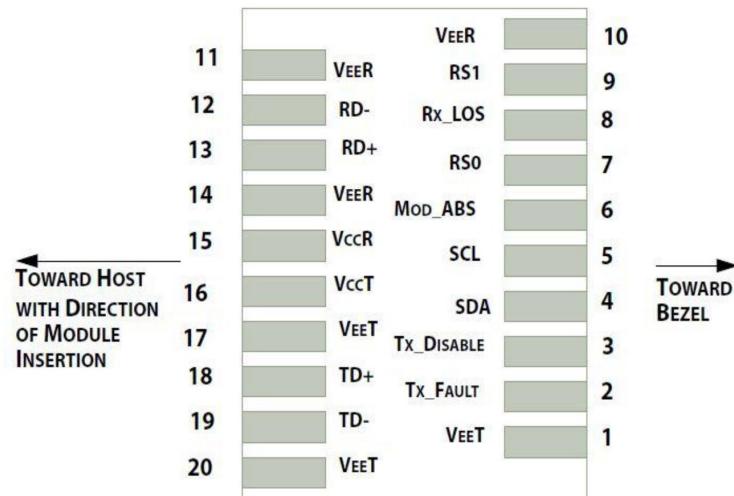
Notes:

1. AC coupled.
2. R_{IN} > 100 kohms @ DC

Optical Characteristics

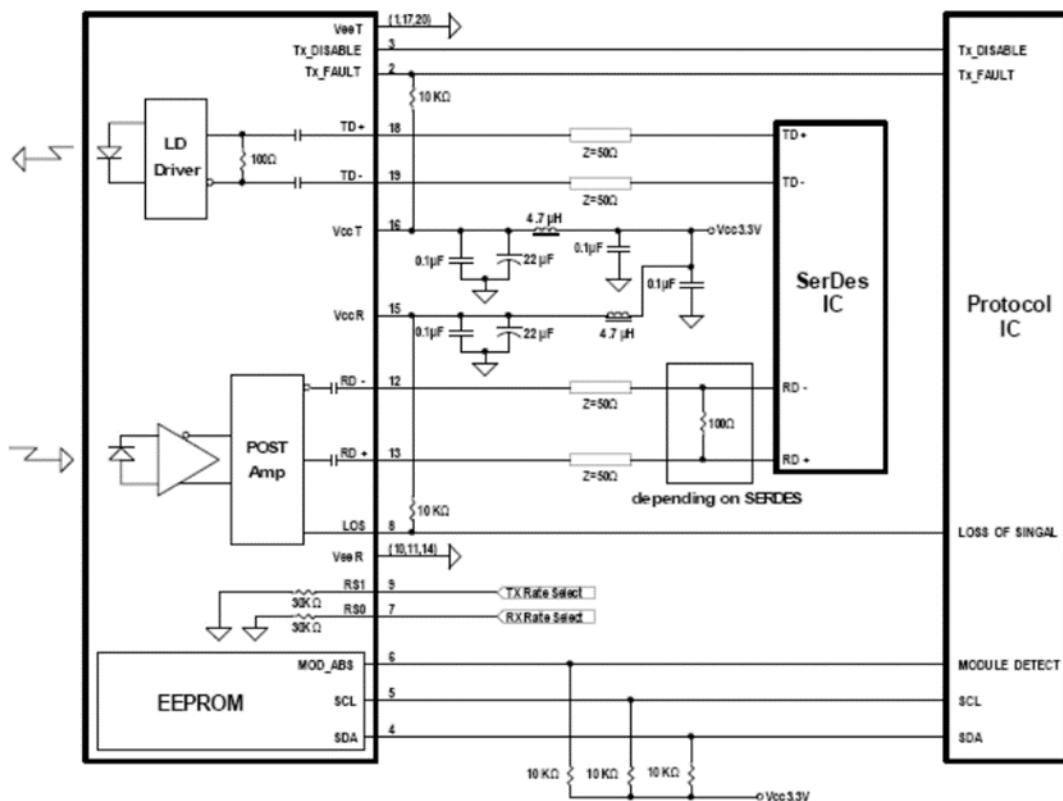
Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
9 μ m Core Diameter SMF	L		15		km	
Data Rate			100/155		Mbps	
Transmitter						
Average Output Power	Pout	-15		-8	dBm	1
Optical Extinction Ratio	ER	8.2			dB	2
Optical Wavelength	T λ	1260	1310	1360	nm	
Spectral Width (RMS)	$\Delta\lambda$			4	nm	
Pout @TX Disable Asserted	Pout			-45	dBm	
Rise/Fall Time (20%~80%)	tr/tf			2	ns	
Receiver						
Receiver Sensitivity	Pmin			-28	dBm	3
Receiver Overload	Pmax	-8			dBm	
Optical Center Wavelength	λ_C	1260		1600	nm	

Notes:

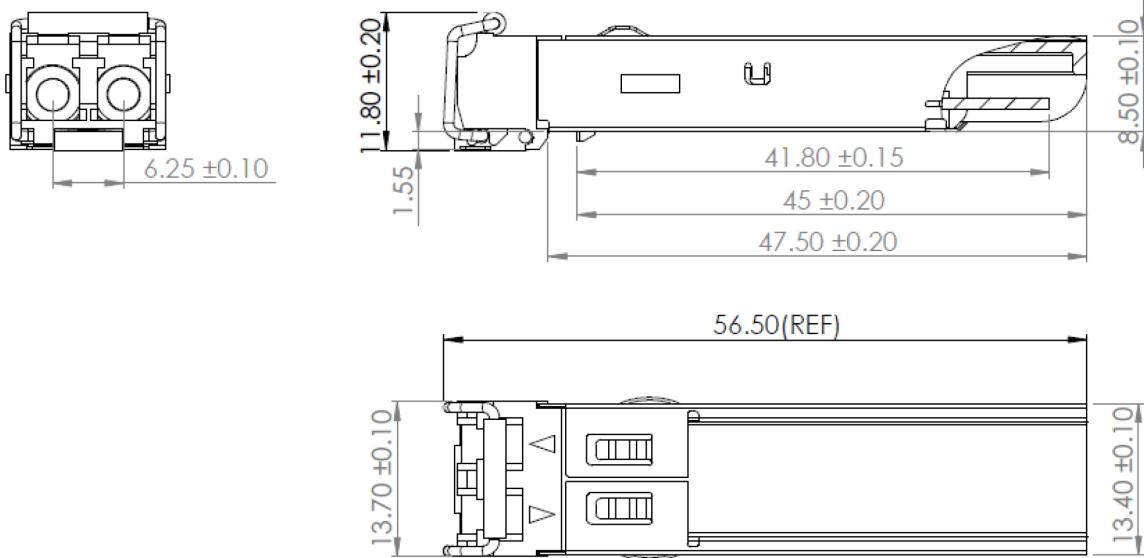

1. Output power is measured by coupling into a 50/125 mm multi-mode fiber.
2. Filtered, measured with a PRBS $2^{23}-1$ test pattern @155Mbps.
3. Minimum average optical power is measured at BER less than 1E-12, with $2^{23}-1$ PRBS and ER=9 dB

Pin Descriptions

Pin	Symbol	Name/Descriptions	Ref.
1	VeeT	Transmitter Ground (Common with Receiver Ground).	1
2	TX Fault	Transmitter Fault. LVTTL-O	2
3	TX Disable	Transmitter Disable. Laser output disabled on high or open. LVTT-I.	3
4	SDA	2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I/O.	
5	SCL	2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I.	
6	MOD_ABS	Module Absent, Connect to VeeT or VeeR in Module.	4
7	RS0	Rate Select 0. Not used	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation. LVTTL-O.	2
9	RS1	Rate Select 1. Not used	5
10	VeeR	Receiver Ground (Common with Transmitter Ground).	1
11	VeeR	Receiver Ground (Common with Transmitter Ground).	1
12	RD-	Receiver Inverted DATA out. AC Coupled. CML-O.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled. CML-O.	
14	VeeR	Receiver Ground (Common with Transmitter Ground).	1
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	VeeT	Transmitter Ground (Common with Receiver Ground).	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled. CML-I.	
19	TD-	Transmitter Inverted DATA in. AC Coupled. CML-O.	
20	VeeT	Transmitter Ground (Common with Receiver Ground).	1


Notes:

1. The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
2. This contact is an open collector/drain output and should be pulled up to the Vcc_Host with resistor in the range 4.7KΩ to 10KΩ. Pull ups can be connected to one or several power supplies, however the host board design shall ensure that no module contact has voltage exceeding module VccT/R +0.5.V.
3. Tx_Disable is an input contact with a 4.7KΩ to 10KΩ pull-up resistor to VccT inside module.
4. Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull the contact up to Vcc_Host with a resistor in the range from 4.7KΩ to 10KΩ. Mod_ABS is asserted “High” when the SFP+ module is physically absent from a host slot.
5. Internally pulled down per SFF-8431


Pin-out of connector Block on Host board

Recommended Circuit Schematic

Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

EEPROM Information

EEPROM memory map specific data field description is as below:

2 wire address 1010000X (A0h)		2 wire address 1010001X (A2h)	
0	Serial ID Defined by SFP MSA (96 bytes)	0	Alarm and Warning Thresholds (56 bytes)
95		55	Cal Constants (40 bytes)
	Vendor Specific (32 bytes)	95	Real Time Diagnostic Interface (24 bytes)
127		119	Vendor Specific (8 bytes)
	Reserved, SFF8079 (128 bytes)	127	
255		247	User Writable EEPROM (120 bytes)
		255	Vendor Specific (8 bytes)

About ProLabs

Our extensive experience comes as standard. For over 20 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with more than 100 optical switching and transport platforms.

A Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 1.6T while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

The Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure compatible products, and immediate answers to your questions. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com

Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com

Telephone: +44 1285 719 600