## FTLF1721P1BCL-AO

Finisar® ${ }^{\circledR}$ FTLF1721P1BCL Compatible TAA Compliant 1000Base-LX SFP Transceiver (SMF, 1310nm, 40km, LC, DOM)

## Features

- INF-8074 and SFF-8472 Compliance
- Uncooled DFB transmitter and PIN receiver
- Duplex LC Connector
- Commercial Temperature 0 to 70 Celsius
- Single-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free



## Applications

- 1x Fibre Channel
- 1000Base-LX Ethernet
- Access and Enterprise


## Product Description

This Finisar ${ }^{\circledR}$ FTLF1721P1BCL compatible SFP transceiver provides 1000Base-LX throughput up to 40km over single-mode fiber (SMF) using a wavelength of 1310 nm via an LC connector. It is guaranteed to be $100 \%$ compatible with the equivalent Finisar ${ }^{\circledR}$ transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.
TAA refers to the Trade Agreements Act (19 U.S.C. \& 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. - made or designated country end products."

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Unit |
| :--- | :--- | :--- | :--- | :--- |
| Maximum Supply Voltage | Vcc | -0.5 | 4.0 |  |
| Storage Temperature | TS | -40 | 85 | $\mathrm{~V}^{\circ}$ |
| Operating Case Temperature | Tc | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |
| Operating Humidity | RH | 5 | 85 | ${ }^{\circ} \mathrm{C}$ |
| Receiver Power | $\mathrm{R}_{\operatorname{Max}}$ | $\mathrm{B}_{\max }$ |  | 1 |
| Maximum Bitrate |  |  | 1.25 | dBm |

Electrical Characteristics (TOP $=25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.3 \mathrm{Volts}$ )

| Parameter | Symbol | Min. | Typ. | Max. | Unit | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Power Supply Voltage | Vcc | 3.15 | 3.30 | 3.43 | V |  |
| Power Supply Current | Icc |  |  | 303 | mA |  |
| Power Consumption | Polss |  |  | 1 | W |  |
| Transmitter |  |  |  | 850 | mV |  |
| Differential data input swing | Vin,pp | 120 | 100 | 120 | $\Omega$ |  |
| Input differential impedance | Zin | 80 |  |  |  |  |
| Receiver |  |  |  | 850 | mV |  |
| Differential data output swing | Vout, pp | 300 | 80 | 120 | $\Omega$ |  |
| Output differential impedance | Zin | 80 |  |  |  |  |

Optical Characteristics

| Parameter | Symbol | Min. | Typ. | Max. | Unit | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transmitter |  |  |  |  |  |  |
| Optical Power (average) | $\mathrm{P}_{\text {AVE }}$ | -1 |  | 3 | dBm | 1 |
| Optical Extinction Ratio | ER | 9 |  |  | dB |  |
| Optical Wavelength | T $\lambda$ | 1290 | 1310 | 1335 | nm |  |
| Insertion loss | IL |  | 1.2 |  |  |  |
| Receiver |  |  |  |  |  |  |
| Receiver Sensitivity (average) | Rave |  |  | -22 | dBm | 2 |
| Receiver overload | $\mathrm{P}_{\text {max }}$ | 1 |  |  | dBm | 3 |
| Receiver wavelength | $\mathrm{R} \lambda$ | 1260 |  | 1565 | nm |  |

## Notes:

1. Coupled into a Single-mode fibre
2. Average power, back-to-back, @1.25Gbps, BER 1E-12, PRBS 231-1.
3. Exceeding the Receiver overload can physically damage the module. Please use appropriate attenuation.

Pin Descriptions

| Pin | Symbol | Name/Descriptions | Ref. |
| :---: | :---: | :---: | :---: |
| 1 | VeeT | Transmitter Ground (Common with Receiver Ground). | 1 |
| 2 | TX Fault | Transmitter Fault. LVTTL-O | 2 |
| 3 | TX Disable | Transmitter Disable. Laser output disabled on high or open. LVTT-I. | 3 |
| 4 | SDA | 2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I/O. |  |
| 5 | SCL | 2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I. |  |
| 6 | MOD_ABS | Module Absent, Connect to VeeT or VeeR in Module. | 4 |
| 7 | RSO | Rate Select 0. Not used | 5 |
| 8 | LOS | Loss of Signal indication. Logic 0 indicates normal operation. LVTTL-O. | 2 |
| 9 | RS1 | Rate Select 1. Not used | 5 |
| 10 | VeeR | Receiver Ground (Common with Transmitter Ground). | 1 |
| 11 | VeeR | Receiver Ground (Common with Transmitter Ground). | 1 |
| 12 | RD- | Receiver Inverted DATA out. AC Coupled. CML-O. |  |
| 13 | RD+ | Receiver Non-inverted DATA out. AC Coupled. CML-O. |  |
| 14 | VeeR | Receiver Ground (Common with Transmitter Ground). | 1 |
| 15 | VccR | Receiver Power Supply. |  |
| 16 | VccT | Transmitter Power Supply. |  |
| 17 | VeeT | Transmitter Ground (Common with Receiver Ground). | 1 |
| 18 | TD+ | Transmitter Non-Inverted DATA in. AC Coupled. CML-I. |  |
| 19 | TD- | Transmitter Inverted DATA in. AC Coupled. CML-O. |  |
| 20 | VeeT | Transmitter Ground (Common with Receiver Ground). | 1 |

## Notes:

1. The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
2. This contact is an open collector/drain output and should be pulled up to the Vcc_Host with resister in the range $4.7 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$. Pull ups can be connected to one or several power supplies, however the host board design shall ensure that no module contract has voltage exceeding module VccT/R +0.5.V.
3. Tx_Disable is an input contact with a $4.7 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$ pull-up resistor to VccT inside module.
4. Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull the contract up to Vcc_Host with a resistor in the range from $4.7 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$. Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot.
5. Internally pulled down per SFF-8431


Pin-out of connector Block on Host board

## Recommended Circuit Schematic



## Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP MultiSourcing Agreement (MSA).


## EEPROM Information

EEPROM memory map specific data field description is as below:


## About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

## U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

## Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285842070

