FTLF1426P2BTL-C FINISAR 6GBASE-LW SFP SMF 1310NM, 10KM, DOM Duplex LC Connector

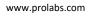
Pro**Labs**

FTLF1426P2BTL-C

Finisar® Compatible TAA Compliant 6GBase-LW SFP+ Transceiver (SMF, 1310nm, 10km, LC, DOM)

Features

- Duplex LC connector
- Support hot-pluggable
- Metal with lower EMI
- Excellent ESD protection
- DFB Transmitter and PIN Receiver
- Distance up to 10km on 9/125um SMF
- Single 3.3V power supply and Low power dissipation <1.2W
- GR-253-CORE compliant
- RoHS Compliant and Lead-Free
- Compliant with IEEE 802.3ae
- Compliant with SFP+ MSA: SFF-8431 Rev4.1
- Compliant with SFF-8472 Rev.11.0
- Digital diagnostic compatible with SFF-847 Rev11.0


Product Description

This Finisar[®] FTLF1426P2BTL compatible SFP+ transceiver provides 6GBase-LW throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Finisar[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Prolabs' SFP transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products.

Regulatory Compliance

Applications

- 10GBase-LR/LW
- 10G Fibre Channel
- Other optical link

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Parameter	Symbol	Min.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5	4.0	V
Storage Temperature	TS	-40	85	°C
Operating Case Temperature-Commercial	Тс	-5	70	°C
Operating Case Temperature-Industrial	Тс	-40	85	°C
Operating Humidity	RH	5	85	%
9/125µm G.652 SMF	Lmax		10	km

Absolute Maximum Ratings

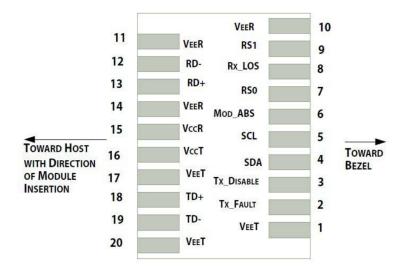
Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.13	3.30	3.47	V	
Power Supply Current	lcc			350	mA	
Power Consumption	P _{DISS}			1	W	
Transmitter						
Differential data input swing	Vin, pp	120	600	850	mV	
Input differential impedance	Zin	90	100	110	Ω	
TX Disable-High		2.0		Vcc+0.3	V	
TX Disable-Low		Vee-0.3		0.8	V	
TX Fault-High		2.0		Vcc+0.3	V	
TX Fault-Low		Vee-0.3		0.8	v	
Receiver						
Differential data output swing	Vout, pp	300	600	850	mV	
Output Differential Impedance	Zin	90	100	110	Ω	
LOS-High		2.0		Vcc+0.3	V	
LOS-Low		Vee-0.3		0.8	V	

Optical Characteristics

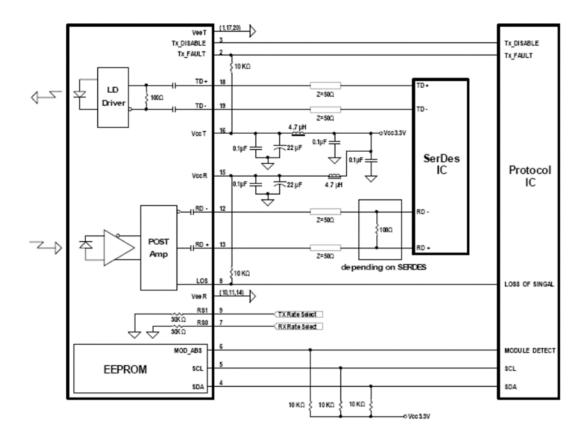
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Output Opt. Power	PO	-6		0.5	dBm	1
Optical modulation amplitude	P(OMA)	-5.2	-2		dBm	
Extinction Ratio	ER	3.5			dB	
Transmitter and Dispersion Penalty	TDP			3.2	dB	
Average Launch power OFF TX	Poff			-30	dBm	
Optical Wavelength	λ	1260	1310	1355	nm	
Side mode Suppression Ratio	SMSR	30			dB	
Optical Return Loss Tolerance	ORLT			12	dB	
Relative Intensity Noise	RIN			-128	dB/Hz	
Transmitter Reflectance				-12	dB	
Eye Diagram		Compatible with IEEE 802.3-2005				
Receiver						
Overload		0.5			dBm	1
Optical Center Wavelength	λC	1260		1610	nm	1
LOS De-Assert	LOSD			-15	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis		0.5		5	dB	
Receiver Sensitivity	PIN			-14.4	dBm	

Notes:

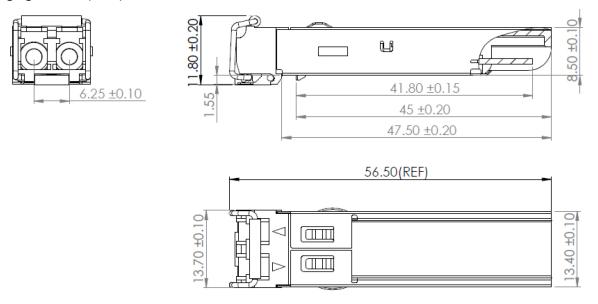

1. BER $\leq 10^{-12}$ @PRBS231-1 at 10.3125Gb/s.

Pin Descriptions

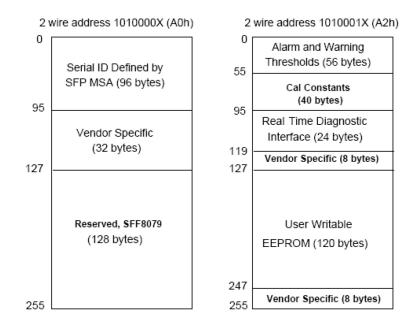
Pin	Symbol	Name/Descriptions	Ref.
1	VeeT	Transmitter Ground (Common with Receiver Ground).	1
2	TX Fault	Transmitter Fault. LVTTL-O	2
3	TX Disable	Transmitter Disable. Laser output disabled on high or open. LVTT-I.	3
4	SDA	2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I/O.	
5	SCL	2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I.	
6	MOD_ABS	Module Absent, Connect to VeeT or VeeR in Module.	4
7	RSO	Rate Select 0. Not used	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation. LVTTL-O.	2
9	RS1	Rate Select 1. Not used	5
10	VeeR	Receiver Ground (Common with Transmitter Ground).	1
11	VeeR	Receiver Ground (Common with Transmitter Ground).	1
12	RD-	Receiver Inverted DATA out. AC Coupled. CML-O.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled. CML-O.	
14	VeeR	Receiver Ground (Common with Transmitter Ground).	1
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	VeeT	Transmitter Ground (Common with Receiver Ground).	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled. CML-I.	
19	TD-	Transmitter Inverted DATA in. AC Coupled. CML-O.	
20	VeeT	Transmitter Ground (Common with Receiver Ground).	1


Notes:

- 1. The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
- 2. This contact is an open collector/drain output and should be pulled up to the Vcc_Host with resister in the range $4.7K\Omega$ to $10K\Omega$. Pull ups can be connected to one or several power supplies, however the host board design shall ensure that no module contract has voltage exceeding module VccT/R +0.5.V.
- 3. Tx_Disable is an input contact with a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to VccT inside module.
- Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull the contract up to Vcc_Host with a resistor in the range from 4.7KΩ to 10KΩ. Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot.
- 5. Internally pulled down per SFF-8431


Pin-out of connector Block on Host board

Recommended Circuit Schematic


Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

EEPROM Information

EEPROM memory map specific data field description is as below:

