

SFP28-10/25G-SR-HW2-OPC

Huawei® Compatible TAA 25GBase-SR SFP28 Transceiver Dual Rate 10/25G (MMF, 850nm, 300m, LC, DOM)

Features

- SFF-8402 and SFF-8472 Compliance
- Duplex LC Connector
- Multi-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

• 25GBase Ethernet

Product Description

This Huawei® compatible SFP28 dual-rate transceiver provides 25GBase-SR throughput up to 300m over multi-mode fiber (MMF) using a wavelength of 850nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Huawei® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5		4.0	V
Storage Temperature	TS	-40		85	°C
Operating Case Temperature	Тс	0	25	70	°C
Relative Humidity	RH	5		85	%
Data Rate		10.3	25.78		Gb/s

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Supply Voltage		Vcc	3.135	3.3	3.465	V	
Module Supply Current		Icc			290	mA	
Power Dissipation		P _D			1000	mW	
Transmitter							
Input Differe	ential Impedance	ZIN		100		Ω	
Differential Data Input Swing		Vin,p-p	180		700	mVp-p	
TX Fault	Transmitter Fault	VOH	2.0		Vcc	V	TX_FAULT
	Normal Operation	VOL	0		0.8	V	
TX Disable	Transmitter Disable	VIH	2.0		Vcc	V	TX_DISABLE
	Transmitter Enable	VIL	0		0.8	V	
Receiver							
Output Differential Impedance Zo 100					Ω		
Differential Data Output Swing		Vout,p-p	300		850	mVp-p	1
Data Output Rise Time, Fall Time		tr, tf		30		ps	2
RX_LOS	Loss of Signal (LOS)	VOH	2.0		Vcc	V	RX_LOS
	Normal Operation	VOL	0		0.8	V	

Notes:

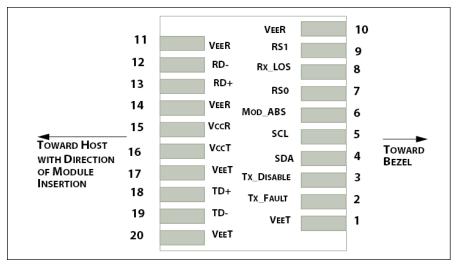
1. Internally AC coupled, but requires an external 100Ω differential load termination.

- 2. 20-80%
- 3. LOS is an open collector output. Should be pulled up with $4.7 K\Omega$ on the host board.

Optical Characteristics

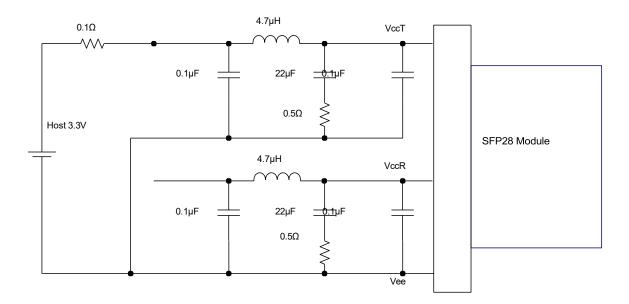
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Launch Optical Power	Ро	-4.0		+2.4	dBm	1
Tx Power (OMA)	Poma	-4			dBm	1
Extinction Ratio	ER	2			dB	
Center Wavelength Range	λς	840	850	860	nm	
Transmitter Dispersion Penalty @25.78Gb/s	TWDP			4.3	dB	
Spectral Width (RMS) @25.78Gb/s	Δλ			0.6	nm	
Optical Return Loss Tolerance	ORLT			12	dB	
Pout @TX-Disable Asserted	Poff			-30	dBm	1
Receiver						
Center Wavelength	λς	840		860	nm	
Receiver Sensitivity (Pavg)	S			-10.3	dBm	2
Receiver Sensitivity (Pavg)	S			-11.0	dBm	3
Receiver Overload (Pavg)	POL	2.5			dBm	
Optical Return Loss	ORL	12			dB	
LOS De-Assert	LOSD			-11	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis		0.5			dB	

Notes:

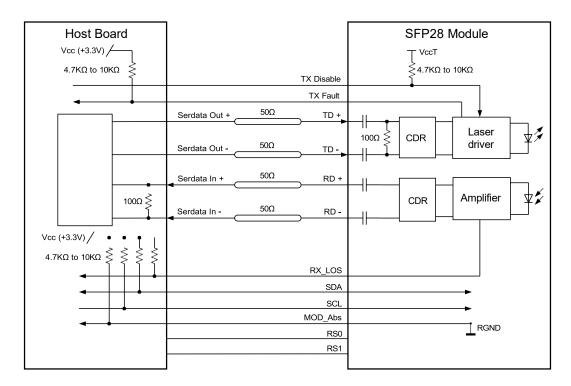

- 1. $50/125\mu m$ fiber with NA = 0.2.
- 2. Measured with PRBS 2³¹-1 at 5e-5 BER @25.78Gb/s.
- 3. Measured with PRBS 2³¹-1 at 5e-5 BER @10.3Gb/s.

Pin Descriptions

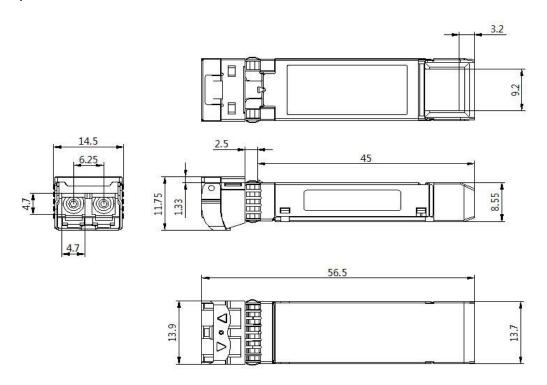
Pin	Symbol	Name/Descriptions	Ref.
1	VeeT	Transmitter Ground.	1
2	TX_Fault	Transmitter Fault (LVTTL-O) – High indicated a fault condition.	2
3	TX_Disable	Transmitter Disable (LVTTL-I) – High or open disables the transmitter.	3
4	SDA	Two wire serial interface Data Line (LVCMOS-I/O)(MOD-DEF2)	4
5	SCL	Two wire serial interface Clock Line (LVCMOS-I/O)(MOD-DEF1)	4
6	MOD_ABS	Module Absent (Output), connected to VeeT or VeeR in the module.	5
7	RS0	Rate Select 0 - Not used, Presents high input impedance.	6
8	RX_LOS	Receiver Loss of Signal (LVTTL-O)	2
9	RS1	Rate Select 1 - Not used, Presents high input impedance.	6
10	VeeR	Receiver Ground.	1
11	VeeR	Receiver Ground.	1
12	RD-	Inverse Received Data out (CML-O). AC Coupled.	
13	RD+	Received Data out (CML-O). AC Coupled.	
14	VeeR	Receiver Ground.	
15	VccR	Receiver Power +3.3V	
16	VccT	Transmitter Power +3.3V	
17	VeeT	Transmitter Ground.	1
18	TD+	Transmitter Data In (CML-I). AC Coupled	
19	TD-	Inverse Transmitter Data In (CML-I). AC Coupled.	
20	VeeT	Transmitter Ground.	1


Notes:

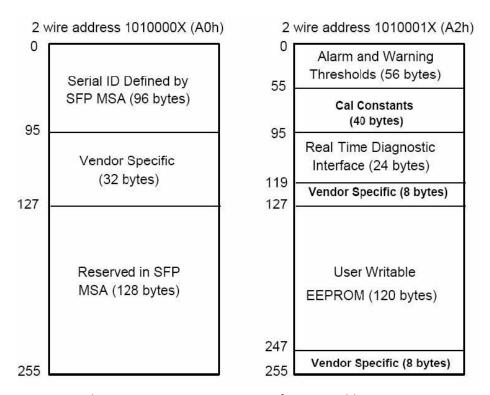
- 1. The module signal grounds are isolated from the module case.
- 2. This is an open collector/drain output that on the host board requires a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to VccHost.
- 3. This input is internally biased high with a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to VccT.
- 4. Two-Wire Serial interface clock and data lines require an external pull-up resistor dependent on the capacitance load.
- 5. This is a ground return that on the host board requires a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to VccHost.
- 6. Rate select can also be set through the 2-wire bus in accordance with SFF-8472 v. 10.2, Rx Rate Select is set at Bit 3, Byte 110, Address A2h. Tx Rate Select is set at Bit 3, Byte 118, Address A2h.
 - Note: writing a "1" selects maximum bandwidth operation. Rate select is the logic OR of the input state of Rate Select Pin and 2-wire bus.


Host PCB SFP+ pad assignment

Recommended Host Board



Recommended Host Board Power Supply Filter Network


Recommended Application Interface Block Diagram

Mechanical Specifications

EEPROM Information

Digital Diagnostic Memory Map Specific Data Field Descriptions

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

