

QSFP112-400GB-FR4-AR-OPC

Arista Networks® Compatible TAA 400GBase-FR4 QSFP112 Transceiver (SMF, 1310nm, 2km, LC, DOM, CMIS 5.0)

Features

- Compliant with 400GBASE-FR4
- Compliant with IEEE802.3ck Standard 400GAUI-4 C2M Electrical Interface
- Compliant with QSFP-DD MSA
- Duplex LC Connector
- CMIS 5.0
- Class 1 Laser
- 2-Wire Interface with Digital Diagnostic Monitoring
- Operating Temperature: 0 to 70 Celsius
- RoHS Compliant and Lead-Free

Applications:

- 400GBase Ethernet
- Access and Enterprise

Product Description

This Arista Networks® compatible QSFP112 transceiver provides 400GBase-FR4 throughput up to 2km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It can operate at temperatures between 0 and 70C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Arista Networks®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

OptioConnect's transceivers are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Relative Humidity	RH	5		89	%	
Supply Voltage	Vcc	-0.5		3.6	V	
Signaling Rate Per Lane			53.125 ± 100ppm		Gbd	PAM4
Operating Distance		2		2000	m	

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage		Vcc	3.135	3.3	3.465	V	
Instantaneous Peak Current at Hot Plug		Icc_IP			4000	mA	
Sustained Peak Current	at Hot Plug	Icc_SP			3300	mA	
Maximum Power Dissip	pation	PD			10	W	
Maximum Power Dissipation (Low-Power Mode)		PD _{LP}			1.5	W	
2-Wire Serial Interface	Clock Rate				400	kHz	
Module Sinusoidal Pow Tolerance 1kHz - 1MHz	• • •				66	mVp-p	
Rx Differential Data Ou	tput Load			100		Ω	
Transmitter							
Differential Pk-Pk Input Voltage Tolerance (TP1a)			750			mV	
Pk-Pk AC Common- Mode Voltage	Low-Frequency (VCMLF)				32	mV	
Tolerance	Full-Band (VCMFB)				80		
Effective Return Loss		ERL	8.5			dB	
Differential Termination	n Mismatch				10	%	
Single-Ended Voltage To	olerance Range		-0.4		3.3	V	
DC Common-Mode Vol	tage Tolerance		-0.35		2.85	V	
Differential-Mode to Co Loss	ommon-Mode Return	RLcd		802.3ck 1200	G-2	dB	
Receiver							
Pk-Pk AC Common- Mode Voltage	Low-Frequency (VCMLF)				32	mV	
	Full-Band (VCMFB)				80		
Differential Pk-Pk	Short-Mode				600	mV	
Output Voltage	Long-Mode				845		

Eye Height	EH	15			mV	
Vertical Eye Closure	VEC			12	dB	
Effective Return Loss	ERL	8.5			dB	
Differential Termination Mismatch				10	%	
Transition Time		8.5			ps	
DC Common-Mode Voltage Tolerance		-0.35		2.85	V	
Common-Mode to Differential-Mode Return Loss	RLDc		802.3ck 120G-1		dB	
Low-Speed Signal						
Module Output SCL and SDA	VOL	0		0.4	V	
Module Input SCL and SDA	VIL	-0.3		Vcc*0.3	V	
	VIH	Vcc*0.7		Vcc+0.5	V	
LPMode/TxDis, ResetL, and ModSelL	VIL	-0.3		0.8	V	
	VIH	2		Vcc+0.3	V	
IntL/RxLOS	VOL	0		0.4	V	
	VOH	Vcc-0.5		Vcc+0.3	V	

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter							
Center Wavelength	λC	1264.5	1271	1277.5	nm		
			1284.5	1291		1297.5	
			1304.5	1311	1317.5		
			1324.5	1331	1337.5		
Side-Mode Suppression Ratio		SMSR	30			dB	
Average Launch Power Per La	AOPL	-3.2		4.4	dBm	1	
Outer Optical Modulation Amplitude (OMAouter) Per Lane		Тома			3.7	dBm	
Outer Optical Modulation	TDECQ<1.4dB	Тома	-0.2				
Amplitude (OMAouter) Per Lane	1.4≤TDECQ≤3.4dB	_	-1.6+TDECQ				
Difference in Launch Power E Lanes (OMAouter)	Between Any Two	DP			3.9	dB	
Transmitter and Dispersion Eye Closure for PAM4 (TDECQ) Per Lane		TDECQ			3.4	dB	
Transmitter Eye Closure for PAM4 (TECQ)		TECQ			3.4	dB	
TDECQ - TECQ					2.5	dB	
Over/Under-Shoot					22	%	
Transmitter Power Excursion				1.8	dBm		

Average Launch Power of Off Transmitter Per Lane		Toff			-16	dBm	
Extinction Ratio Per Lane		ER	3.5			dB	
Transmitter Transition Time					17	ps	
RIN _{17.1} OMA		RIN			-136	dB/Hz	
Optical Return Loss Tolerance		ORL			17.1	dB	
Transmitter Reflectance	TR			-26	dB		
Receiver							
Center Wavelength		λC	1264.5	1271	1277.5	nm	
			1284.5	1291	1297.5		
			1304.5	1311	1317.5		
			1324.5	1331	1337.5		
Damage Threshold Per Lane		AOP _D	5.4			dBm	
Average Receive Power Per Land	e	AOP _R	-7.2		4.4	dBm	2
Receive Power (OMAouter) Per	Lane	OMA _R			3.7	dBm	
Difference in Receive Power Bet (OMAouter)	tween Any Two Lanes	DR			4.1	dB	
Receiver Reflectance		RR			-26	dB	
Receiver Sensitivity	TECQ<1.4dB	SOMA			-4.6	dBm	
(OMAouter) Per Lane	1.4≤TECQ≤3.4dB				-6+TECQ]	
Stressed Receiver Sensitivity (OMAouter) Per Lane		SRS			-2.6	dBm	3
Stressed Eye Closure for PAM4 (SECQ)				3.4		dB	
OMAouter of Each Aggressor La	ne			1.4		dBm	

Notes:

- 1. Average launch power, per lane (minimum), is informative and not the principal indicator of signal strength.
- 2. Average receive power, per lane (minimum), is informative and not the principal indicator of signal strength.
- 3. Measured with conformance test signal at TP3 for the BER=2.4x10⁻⁴.

Pin Descriptions

Pin	Symbol	Logic	Name/Description	Notes
1	GND		Module Ground.	1
2	Tx2-	CML-I	Transmitter Inverted Data Input.	
3	Tx2+	CML-I	Transmitter Non-Inverted Data Input.	
4	GND		Module Ground.	1
5	Tx4-	CML-I	Transmitter Inverted Data Input.	
6	Tx4+	CML-I	Transmitter Non-Inverted Data Input.	
7	GND		Module Ground.	1
8	ModSelL	LVTTL-I	Module Select.	
9	ResetL	LVTTL-I	Module Reset.	
10	VccRx		+3.3V Receiver Power Supply.	2
11	SCL	LVCMOS-I/O	2-Wire Serial Interface Clock.	
12	SDA	LVCMOS-I/O	2-Wire Serial Interface Data.	
13	GND		Module Ground.	1
14	Rx3+	CML-O	Receiver Non-Inverted Data Output.	
15	Rx3-	CML-O	Receiver Inverted Data Output.	
16	GND		Module Ground.	1
17	Rx1+	CML-O	Receiver Non-Inverted Data Output.	
18	Rx1-	CML-O	Receiver Inverted Data Output.	
19	GND		Module Ground.	1
20	GND		Module Ground.	1
21	Rx2-	CML-O	Receiver Inverted Data Output.	
22	Rx2+	CML-O	Receiver Non-Inverted Data Output.	
23	GND		Module Ground.	1
24	Rx4-	CML-O	Receiver Inverted Data Output.	
25	Rx4+	CML-O	Receiver Non-Inverted Data Output.	
26	GND		Module Ground.	1
27	ModPrsL	LVTTL- O	Module Present.	
28	IntL/RxLOS	LVTTL- O	Interrupt/Optional RxLOS.	
29	VccTx		+3.3V Transmitter Power Supply.	2
30	Vcc1		+3.3V Power Supply.	2
31	LPMode/TxDis	LVTTL- I	Low-Power Mode/Optional Tx_Disable.	
32	GND		Module Ground.	1
33	Tx1+	CML-I	Transmitter Non-Inverted Data Input.	
34	Tx1-	CML-I	Transmitter Inverted Data Input.	
35	GND		Module Ground.	1

36	Tx1+	CML-I	Transmitter Non-Inverted Data Input.	
37	Tx1-	CML-I	Transmitter Inverted Data Input.	
38	GND		Module Ground.	1

Pin-Out Details

Recommended Host Board Schematic

Mechanical Specifications

OptioConnect

Innovation for the Future of High-Speed Networking

Who We Are

OptioConnect is reshaping the landscape of communication and high-speed networking through intelligent technology. With a core focus on cutting edge technology, we deliver smarter fiber optic solutions for enterprise networks, data centers, and next-gen telecom infrastructures.

What We Do

At OptioConnect, we fuse advanced engineering with intelligent automation to drive the future of networking. Our Al-integrated solutions are designed to optimize performance and streamline operations with:

- Superior Performance
- Network and traffic optimization
- Intelligent energy management
- Seamless OEM compatibility
- Scalable cost-efficiency

Smarter Networks by Design

Innovation isn't just a goal—it's our process. We embed AI and machine learning across our R&D and product lines, enabling adaptive performance, automated tuning, and faster deployment cycles. The result? Networks that don't just work—they learn, evolve, and outperform.

Our Team

Our engineers, data scientists, and network architects bring decades of experience and a future-focused mindset. We provide hands-on support with intelligent insights that turn complex challenges into simple solutions.

Our Mission

To deliver AI-enhanced connectivity that reduces cost, increases speed, and maximizes efficiency—empowering our partners to operate at the forefront of a rapidly evolving digital world.

Let's Connect

Discover how OptioConnect's intelligent infrastructure solutions can power your network's next leap forward. www.optioconnect.com | info@optioconnect.com

