

QDD4-400GB-ER4L-AR-AO

Arista Networks® Compatible TAA 400GBase-ER4L PAM4 QSFP-DD Transceiver (SMF, 1310nm, 30km, LC, DOM, CMIS 4.0)

Features

- Compliant to QSFP-DD MSA
- 8x53.125Gbps Electrical Interface (400GAUI-8)
- 4 Narrow LWDM Lanes, MUX/DEMUX Design
- Power Consumption: 12W
- Duplex LC Connector
- Up to 30km Transmission on Single-Mode Fiber (SMF) with FEC
- RoHS Compliant and Lead-Free
- Operating Temperature: 0 to 70 Celsius
- RoHS Compliant and Lead-Free
- Operating Temperature: 0 to 70 Celsius

Applications

- 400GBase Ethernet
- Access and Enterprise

Product Description

This Arista Networks® compatible QSFP-DD transceiver provides 400GBase-ER4L throughput up to 30km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Arista Networks® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. It is built to meet or exceed the specifications of Arista Networks® to ensure seamless network integration. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products."

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Data Rate Per Lane			26.5625		GBd	PAM4
Data Rate Accuracy		-100		100	ppm	
Operating Case Temperature	Tc	0		70	°C	
Storage Temperature	Tstg	-40		85	°C	
Maximum Voltage	Vcc	-0.5		3.6	V	
Relative Humidity (Non-Condensing)	RH	0		85	%	
Damage Threshold Per Lane	THd	-2.4			dBm	
Pre-FEC Bit Error Ratio				2.4x10 ⁻⁴		
Post-FEC Bit Error Ratio				1x10 ⁻¹²		1
Link Distance	D	0.002		30	km	2

Notes:

1. FEC is provided by the host system.
2. Additional attenuation is required to support short distances. Ensure that the receiver input power does not exceed the overload point or damage the receiver (APD).

Electrical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Supply Voltage	Vcc	3.135	3.3	3.465	V	
Supply Current	Icc			3.64	A	
Power Consumption				12	W	
Transmitter						
Signaling Rate Per Lane	TP1	26.5625 ± 100ppm			GBd	
Differential Pk-Pk Input Voltage Tolerance	TP1a	900			mVp-p	1
Differential Termination Mismatch	TP1			10	%	
Differential Input Return Loss	TP1	IEEE 802.3-2015 Equation (83E-5)			dB	
Differential to Common-Mode Input Return Loss	TP1	IEEE 802.3-2015 Equation (83E-6)			dB	
Module Stressed Input Test	TP1a	See IEEE 802.3bs 120E.3.4.1				2
Single-Ended Voltage Tolerance Range (Minimum)	TP1a	-0.4 to 3.3			V	
DC Common-Mode Input Voltage	TP1	-350		2850	mV	3
Receiver						
Signaling Rate Per Lane	TP4	26.5625 ± 100ppm			GBd	
Differential Pk-Pk Output Voltage	TP4			900	mVp-p	
AC Common-Mode Output Voltage (RMS)	TP4			17.5	mV	
Differential Termination Mismatch	TP4			10	%	

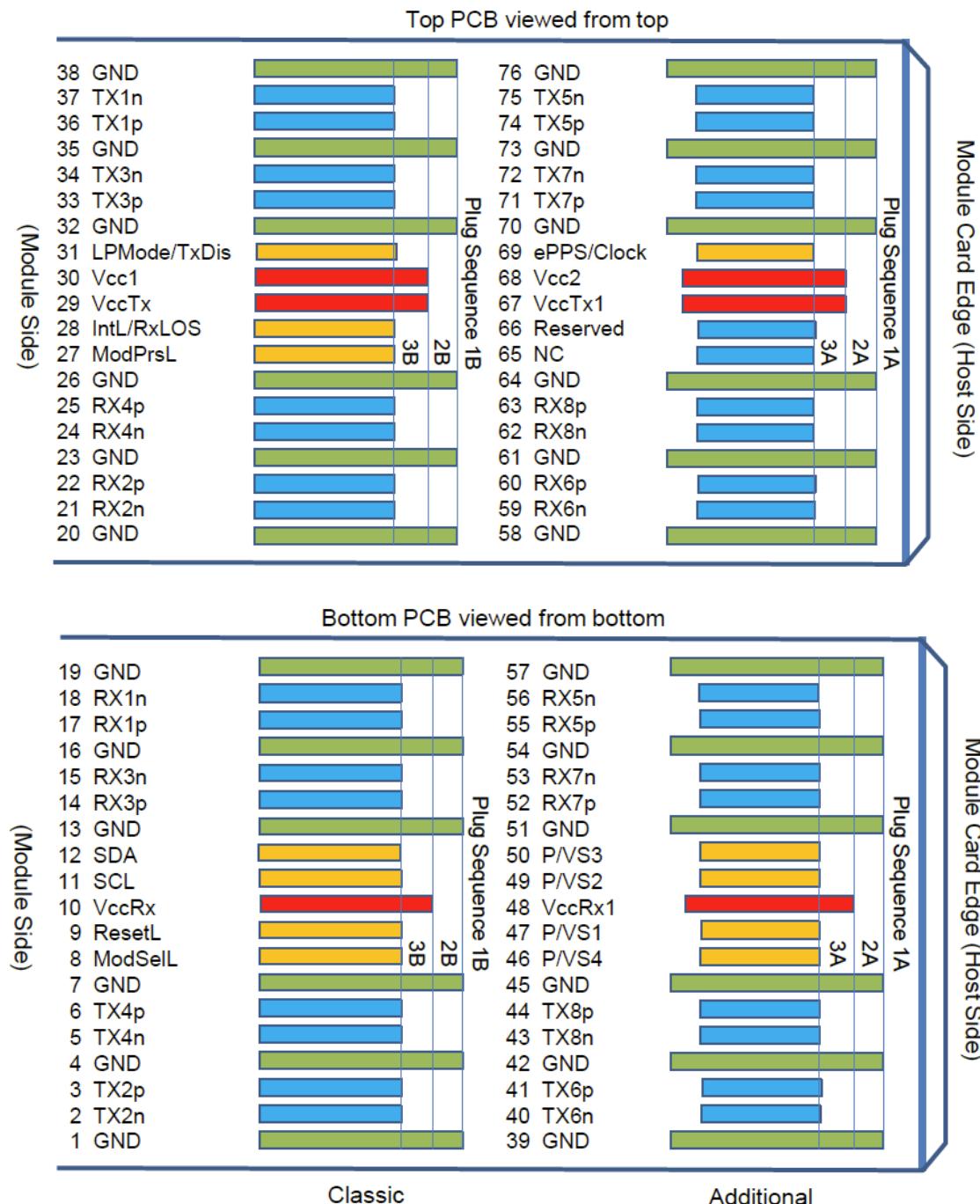
Differential Output Return Loss	TP4	IEEE 802.3-2015 Equation (83E-2)				
Common- to Differential-Mode Conversion Return Loss	TP4	IEEE 802.3-2015 Equation (83E-3)				
Transition Time (20-80%)	TP4	9.5			ps	
Near-End Eye Symmetry Mask Width (ESMW)	TP4		0.265		UI	
Near-End Eye Height (Differential)	TP4	70			mV	
Far-End Eye Symmetry Mask Width (ESMW)	TP4		0.2		UI	
Far-End Eye Height (Differential)	TP4	30			mV	
Far-End Pre-Cursor ISI Ratio	TP4	-4.5		2.5	%	
Common-Mode Output Voltage (Vcm)	TP4	-350		2850	mV	3

Notes:

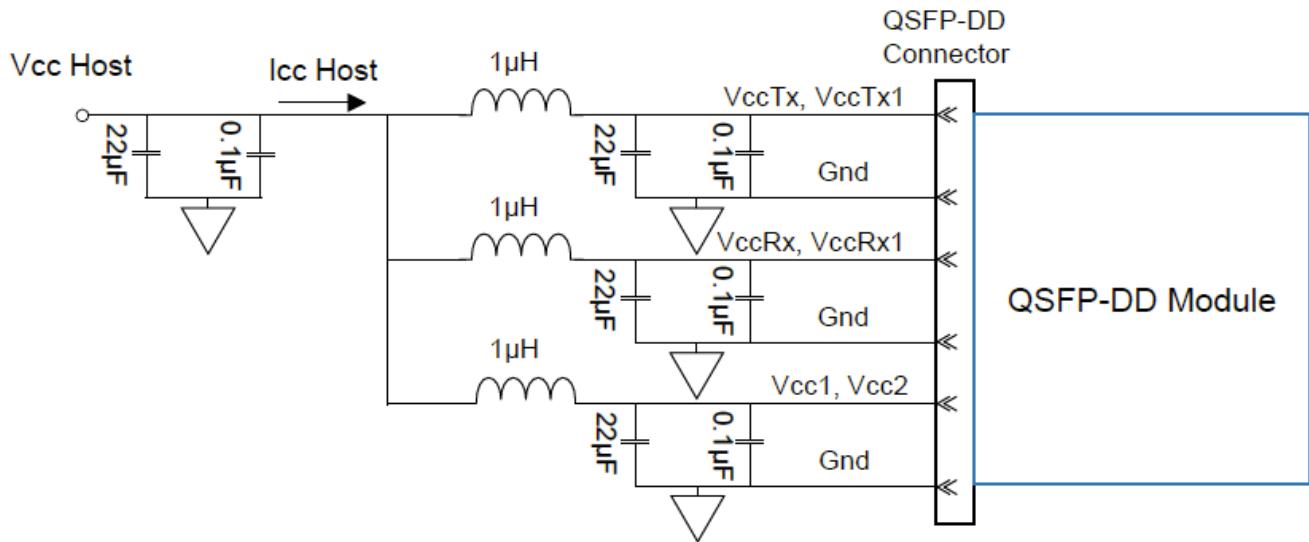
1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
2. Meets BER specified in IEEE 802.3bs 120E.1.1.
3. DC common-mode voltage generated by the host. Specification includes the effects of ground offset voltage.

Optical Characteristics

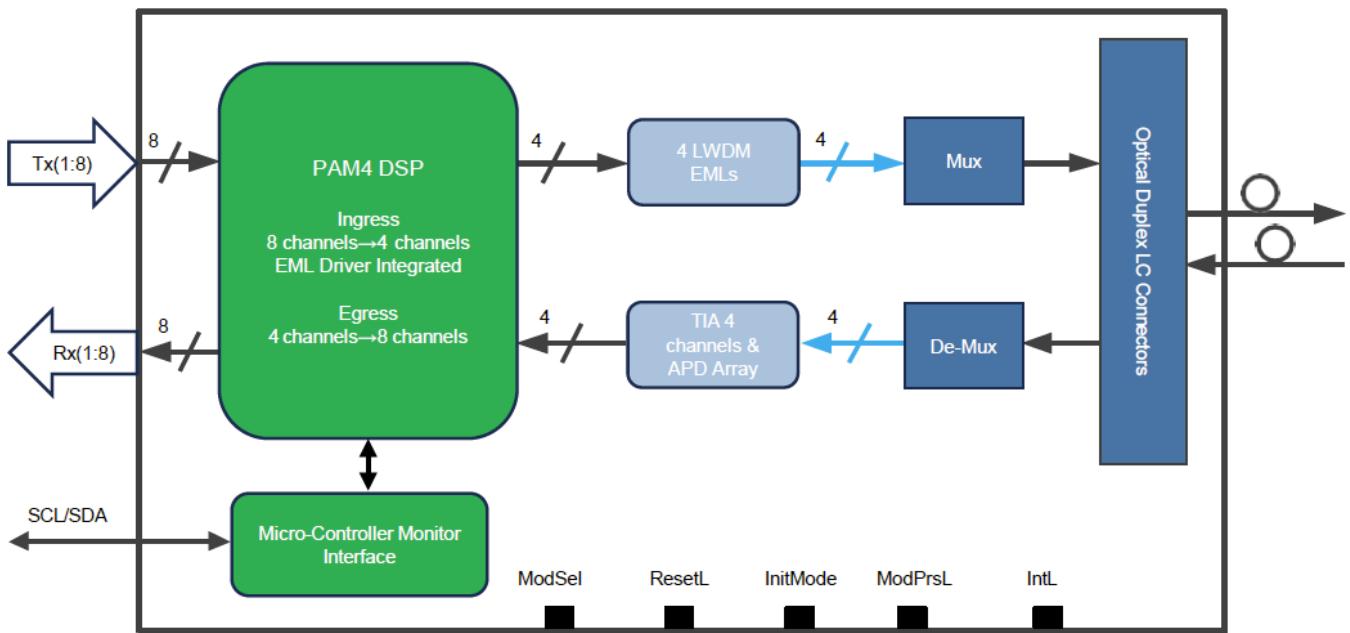
Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Transmitter						
Wavelength	L0	1304.06	1304.58	1305.10	nm	
	L1	1306.33	1306.85	1307.38	nm	
	L2	1308.61	1309.14	1309.66	nm	
	L3	1310.90	1311.43	1311.96	nm	
Data Rate Per Lane	53.125 ± 100ppm				GBd	
Modulation Format	PAM4					
Side-Mode Suppression Ratio	SMSR	30			dB	
Total Average Launch Power	PT			11.6	dBm	
Average Launch Power Per Lane	PAVG	0		5.6	dBm	
Outer Optical Modulation Amplitude (OMAouter) Per Lane	TDECQ<1.4dB	POMA	3	6.4	dBm	
	1.4dB≤TDECQ≤3.9dB		1.6+TDECQ			
Difference in Launch Power Between Any Two Lanes (OMAouter)				3	dB	
Transmitter and Dispersion Eye Closure for PAM4 Per Lane	 CD <16ps/nm	TDECQ		3.5	dB	
	 CD >16ps/nm			3.9		
Transmitter Eye Closure for PAM4 Per Lane	TECQ			3.5	dB	
 TDECQ-TECQ Per Lane	 CD <16ps/nm			2.3	dB	
	 CD >16ps/nm			2.7		
Average Launch Power of Off Transmitter Per Lane	Poff			-15	dBm	

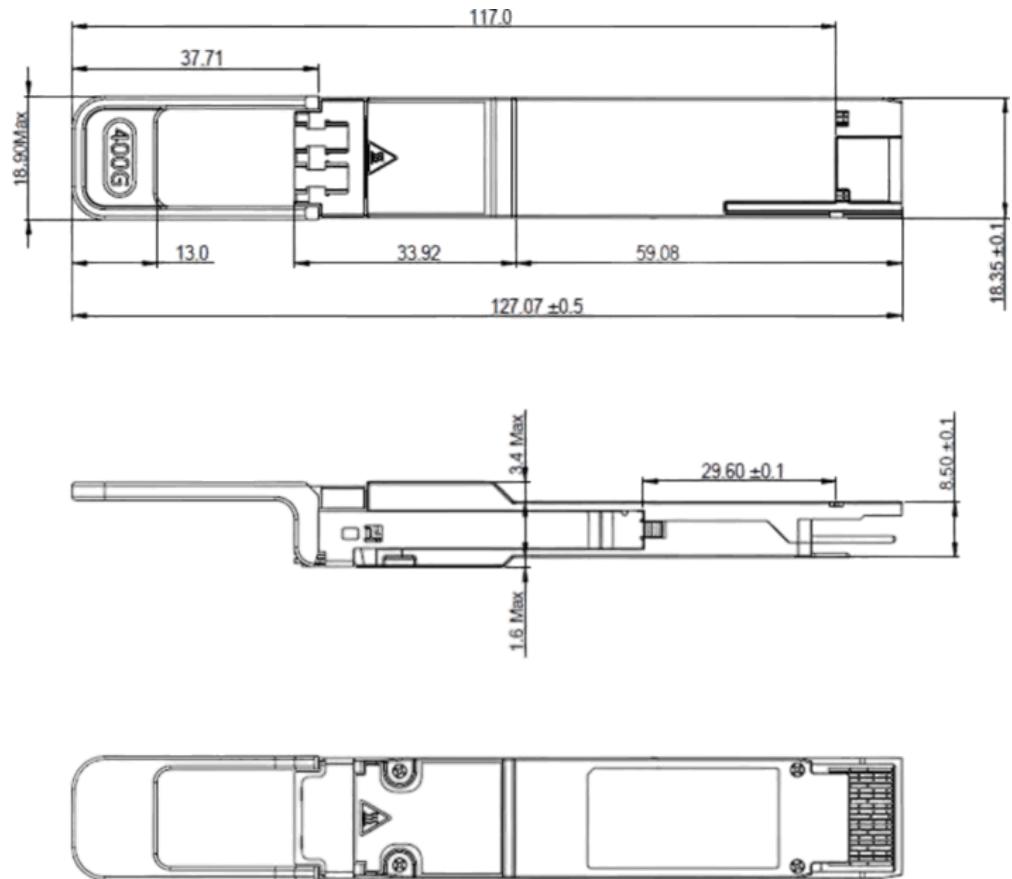

Extinction Ratio	ER	5			dB	
Transmitter Transition Time				17	ps	
Transmitter Over/Under-Shoot				22	%	
Transmitter Power Excursion				3.9	dB	
RIN ₁₅ OMA	RIN			-136	dB/Hz	
Optical Return Loss Tolerance	ORLT			15	dB	
Transmitter Reflectance	TR			-26	dB	
Receiver						
Wavelength	L0	1304.06	1304.58	1305.10	nm	
	L1	1306.33	1306.85	1307.38	nm	
	L2	1308.61	1309.14	1309.66	nm	
	L3	1310.90	1311.43	1311.96	nm	
Data Rate Per Lane	53.125 ± 100ppm				GBd	
Modulation Format	PAM4					
Damage Receiver Power Per Lane		-2.4			dBm	
Average Receiver Power Per Lane		-14.7		-3.4	dBm	
Receiver Power (OMAouter) Per Lane				-2.6	dBm	
Difference in Receiving Power Between Any Two Lanes (OMAouter)				3.6	dB	
Receiver Reflectance	RR			-26	dB	
Receiver Sensitivity (OMAouter) Per Lane	TDECQ<1.4dB	Sen		-12.5	dBm	
	1.4dB≤TDECQ≤3.9dB			-13.9+TECQ		
Stress Receiver Sensitivity (OMAouter) Per Lane				-10.0	dBm	
Conditions of Stressed Receiver Sensitivity Test						
Stressed Eye Closure for PAM4 (SECQ) Per Lane Under Test			3.9		dB	
OMAouter of Each Aggressor Lane			-6.4		dBm	

Pin Descriptions


Pin	Logic	Symbol	Name/Description	Plug Seq.
1		GND	Module Ground.	1B
2	CML-I	Tx2-	Transmitter Inverted Data Input.	3B
3	CML-I	Tx2+	Transmitter Non-Inverted Data Input.	3B
4		GND	Module Ground.	1B
5	CML-I	Tx4-	Transmitter Inverted Data Input.	3B
6	CML-I	Tx4+	Transmitter Non-Inverted Data Input.	3B
7		GND	Module Ground.	1B
8	LVTTL-I	ModSelL	Module Select.	3B
9	LVTTL-I	ResetL	Module Reset.	3B
10		VccRx	+3.3V Receiver Power Supply.	2B
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	3B
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	3B
13		GND	Module Ground.	1B
14	CML-O	Rx3+	Receiver Non-Inverted Data Output.	3B
15	CML-O	Rx3-	Receiver Inverted Data Output.	3B
16		GND	Module Ground.	1B
17	CML-O	Rx1+	Receiver Non-Inverted Data Output.	3B
18	CML-O	Rx1-	Receiver Inverted Data Output.	3B
19		GND	Module Ground.	1B
20		GND	Module Ground.	1B
21	CML-O	Rx2-	Receiver Inverted Data Output.	3B
22	CML-O	Rx2+	Receiver Non-Inverted Data Output.	3B
23		GND	Module Ground.	1B
24	CML-O	Rx4-	Receiver Inverted Data Output.	3B
25	CML-O	Rx4+	Receiver Non-Inverted Data Output.	3B
26		GND	Module Ground.	1B
27	LVTTL-O	ModPrsL	Module Present.	3B
28	LVTTL-O	IntL	Interrupt.	3B
29		VccTx	+3.3V Transmitter Power Supply.	2B
30		Vcc1	+3.3V Power Supply.	2B
31	LVTTL-I	InitMode	Initialization Mode. In legacy QSFP applications, InitMode pad is called LPMODE.	3B
32		GND	Module Ground.	1B
33	CML-I	Tx3+	Transmitter Non-Inverted Data Input.	3B
34	CML-I	Tx3-	Transmitter Inverted Data Input.	3B
35		GND	Module Ground.	1B
36	CML-I	Tx1+	Transmitter Non-Inverted Data Input.	3B
37	CML-I	Tx1-	Transmitter Inverted Data Input.	3B

38		GND	Module Ground.	1B
39		GND	Module Ground.	1A
40	CML-I	Tx6-	Transmitter Inverted Data Input.	3A
41	CML-I	Tx6+	Transmitter Non-Inverted Data Input.	3A
42		GND	Module Ground.	1A
43	CML-I	Tx8-	Transmitter Inverted Data Input.	3A
44	CML-I	Tx8+	Transmitter Non-Inverted Data Input.	3A
45		GND	Module Ground.	1A
46		Reserved	For Future Use.	3A
47		VS1	Module Vendor-Specific 1.	3A
48		VccRx1	+3.3V Receiver Power Supply.	2A
49		VS2	Module Vendor-Specific 2.	3A
50		VS3	Module Vendor-Specific 3.	3A
51		GND	Module Ground.	1A
52	CML-O	Rx7+	Receiver Non-Inverted Data Output.	3A
53	CML-O	Rx7-	Receiver Inverted Data Output.	3A
54		GND	Module Ground.	1A
55	CML-O	Rx5+	Receiver Non-Inverted Data Output.	3A
56	CML-O	Rx5-	Receiver Inverted Data Output.	3A
57		GND	Module Ground.	1A
58		GND	Module Ground.	1A
59	CML-O	Rx6-	Receiver Inverted Data Output.	3A
60	CML-O	Rx6+	Receiver Non-Inverted Data Output.	3A
61		GND	Module Ground.	1A
62	CML-O	Rx8-	Receiver Inverted Data Output.	3A
63	CML-O	Rx8+	Receiver Non-Inverted Data Output.	3A
64		GND	Module Ground.	1A
65		NC	Not Connected.	3A
66		Reserved	For Future Use.	3A
67		VccTx1	+3.3V Transmitter Power Supply.	2A
68		Vcc2	+3.3V Power Supply.	2A
69		Reserved	For Future Use.	3A
70		GND	Module Ground.	1A
71	CML-I	Tx7+	Transmitter Non-Inverted Data Input.	3A
72	CML-I	Tx7-	Transmitter Inverted Data Input.	3A
73		GND	Module Ground.	1A
74	CML-I	Tx5+	Transmitter Non-Inverted Data Input.	3A
75	CML-I	Tx5-	Transmitter Inverted Data Input.	3A
76		GND	Module Ground.	1A


Pin-Out Details


Recommended Power Supply Filter

Block Diagram of Transceiver

Mechanical Specifications

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salesupportemea@addonnetworks.com

Telephone: +44 1285 842070