BIMM134 – The Biology of Cancer SPRING 2015

Lectures:

CENTR 214

Tuesdays/Thursdays, March 31 – June 4 8:00 – 9:20 AM

Instructor: Eric Bennett, Ph.D. - email - e1bennett@ucsd.edu

Office Hours: Tuesday and Thursday 3-4 pm, Natural Sciences Building, Room 5316

Required Textbook:

The Biology of Cancer – 2nd Edition Robert A. Weinberg Copies of the textbook are on reserve at the Biomedical Library

Exams:

Midterm I: April 23, in-class Midterm II: May 19, in-class

Final: June 11 - 8AM, comprehensive

Final grade breakdown

Midterm I – 30% Midterm II – 30% Final – 35% In class participation – 5%

Exam policy:

There will be **NO** makeup exams.

You are required to take all exams without exception.

Midterm exam re-grade requests will be allowed. Requests will need to be made in writing no later than 1 week prior to date at which graded exams are returned to the class. Re-grade requests must be typed and printed and appended to the original exam. Email requests will not be allowed and all re-grading decisions are final.

Teaching Assistant: (Discussion sessions to be held in Weeks 2 to 10)

Name	Email Address	Sessions
Daniel Garcia	dag032@ucsd	Fridays 3-3:50; Center Hall 201 Thursdays 10-11; Leichtag 2A05

Email policy:

Use the teaching assistant as your primary contact point for questions - I will attempt to answer short and direct clarification questions as long as you include BIMM134 in subject line of email. Long open-ended emails will likely receive either no response or a short response. I will respond to emails only once a day so if you don't receive an immediate response, wait.

Course Learning Goals:

I. Understand the heterogeneity and complexity associated with human cancers. Key Concepts

What extrinsic and intrinsic factors lead to cancer initiation?
What cell types contribute to cancer initiation?
How does the surrounding tumor microenvironment as well the interactions between the tumor and other body systems impact cancer formation?

II. Understand the molecular features that drive cancer formation.

Key Concepts

How do cells lose the ability to control their growth? What cellular signaling pathways are commonly perturbed during cancer formation?

What defects in cellular and molecular failsafe mechanisms expose vulnerabilities to cancer formation?

III. Understand the genetic basis for cancer formation

Key Concepts

How does cancer result from genetic clonal evolution? What molecular pathways prevent genetic alteration? How does genetic alteration lead to cancer formation and chemoresistance?

How is our current genetic understanding of cancer being used to treat specific cancers?

IV. Understand the experimental basis for historical and current discoveries in cancer biology.

Key Concepts

How were/are oncogenes and tumor suppressors discovered? Who were scientists responsible for historically significant discoveries in cancer biology?

How are current cancer research efforts reshaping our view of cancer?

BIMM134 Biology of Cancer

Lecture subject	Reading				
March 31 - Introduction to Cancer A. Key terminology B. Cancer Stats C. Carcinogens and environmental causes D. Cell Signaling	Chapter 2 – tBoC Pgs 31-44;59-69				
April 2 – Principles of cancer initiation and Tumor heterogeneity A. Properties of cancer initiating cells B. Cancer stem cell hypothesis C. Multi-step tumorigenesis	pdf on course website Chapter 11 – tBoC Pgs 439-474				
April 7 –Tumor Viruses A. Clonal evolution theory B. Animal Tumor viruses and cellular transformation C. Human Tumor viruses	Chapter 3 - tBoC				
April 9 – Human Cellular Oncogenes	Chapter 4 - tBoC				
April 14 –Tumor Suppressors	Chapter 7 – tBoc				
April 16 – Loss of proliferation control I RTKs – Ras	Chapter 5 – tBoC Chapter 6 - tBoC Pgs 175-193				
April 21 - Loss of proliferation control II – Cell cycle	Chapter 8 – tBoC Pgs 231-254				
April 23 – Midterm - I					

April 28 – Loss of feedback inhibition – A. Translational control	Chapter 6 – tBoC Pgs 193-202
B. nutrient growth control; PI3K – mTOR	pdf on course website
April 30 – Avoiding cell growth suppressive signals – Senescence	Chapter 10 – tBoC pdf on course website

May 5 – Avoiding cell growth suppressive signals – p53	Chapter 9 - tBoC Pgs 331-378 pdf on course website
May 7 - Avoiding cell growth suppressive signals – Apoptosis I	Chapter 9 - tBoC pdf on course website
May 12 - Avoiding cell growth suppressive signals – Apoptosis II	Chapter 9 - tBoC pdf on course website
May 14 - Genomic instability and DNA damage	Chapter 12 – tBoC

	4.0	B 41 14	_
ıMa١	/ 19 –	 Midtern 	n 2

May 21 –Cancer Metabolism Reuben Shaw Guest Lecture	pdf on course website	
May 26 – Angiogenesis and the Cancer Microenvironment	Chapter 13 – tBoC	
May 28 – Metastasis	Chapter 14 – tBoC Pgs 641-694	
June 2 – Cancer genomics – Rafael Bejar guest lecture		
June 4 – Cancer Immunology	Chapter 15 - tBoC	

June 11 - Final Exam 8AM