WORKSHOP SYLLABUS POLI 279: Special Topics in Methodology: Social Networks Winter 2016 Monday 9:00am – 11:50am, Social Sciences Building 104 Prof: James Fowler, SSB 392 <u>http://fowler.ucsd.edu</u> Office Hours: by appointment

Workshop Description

This workshop is designed to give students an opportunity to publish a paper using network methodology. The course provides a brief introduction to social networks concepts and then focuses on the projects students are working on. By the end of the course, each student team will have produced a core set of results that will form the basis of an article to be submitted for publication.

The format of this workshop is social. Science is a *social* activity, so there will be a very large emphasis on working with, soliciting feedback from, and providing feedback to your peers. *All papers must be coauthored*.

Main Text

From a Physicist's point of view:

• Newman, Mark. Networks: an Introduction. Oxford University Press, Inc., 2010.

http://www.amazon.com/Networks-Introduction-Mark-Newman/dp/0199206651

Please try to at least skim the sections assigned before doing the readings for each week.

Other Texts (All Optional, but Very Helpful)

From a Sociologist's point of view:

• Wasserman, Stanley, and Katherine Faust. *Social network analysis: Methods and applications*. Cambridge university press, 1994.

From a Computer Scientist's point of view:

• Easley, David, and Jon Kleinberg. *Networks, crowds, and markets*. Cambridge University Press, 2010.

From an Economist's point of view:

• Jackson, Matthew O. Social and economic networks. Princeton University Press, 2010.

From another Physicist's point of view:

• Barabasi, Laszlo. *Network Science*. <u>http://barabasilab.neu.edu/networksciencebook</u>

Format of the Workshop

Each week we will read one or two studies that illustrate network concepts. I plan to walk through the methods I used in these studies and in some cases I will provide R code and data so you can see exactly how things were implemented. I have provided links to each paper – please also read the supplementary material for each paper carefully since that is where description of methods takes place.

Starting in Week 2, groups will be assigned to present papers related to their topics and lead a discussion (see requirements).

In the last two weeks, groups will present the first drafts of the methods and results sections of the papers you are writing.

Data

The most important thing you must do, and quickly, is to decide on a data source for your project. This will help you figure out who to work with. You are more than welcome to use your own data, but here are some existing sources you may also decide to use:

Judicial Citations – http://fowler.ucsd.edu/judicial.htm Cosponsorships – http://fowler.ucsd.edu/cosponsorship.htm Roll Call Affiliations - http://www.voteview.com/ Legislative Committee Assignments - http://web.mit.edu/17.251/www/data_page.html Campaign Contributions - http://www.fec.gov/finance/disclosure/ftp_download.shtml IR Data / Correlates of War - http://www.correlatesofwar.org/ Add Health - http://www.cpc.unc.edu/addhealth (You must get permission from Add Health before you use this data – tell me ASAP if you intend to use it)

Other possibilities include Twitter data, academic citations, placements in political science, and students on Facebook (ask me if you are interested in these).

Tools

The next important thing is to get your data into a package for analysis and visualization.

For analysis I use R: <u>http://cran.r-project.org/</u> Here's a nice (but old) tutorial on the igraph package in R: <u>http://cneurocvs.rmki.kfki.hu/igraph/NIPS08.html</u> For more recent implementations look here: <u>http://www.r-bloggers.com/?s=igraph</u>

For network movies I use SoNIA: <u>http://www.stanford.edu/group/sonia/</u> which has recently been implemented in R.

A nice R package that implements exponential random graph models (ERGM) is <u>http://statnet.org</u> with a tutorial here: <u>http://www.nips2008.statnet.org/</u>

Websites with Good Sources of References

Lada Adamic - http://www.ladamic.com/ Albert-László Barabási - http://www.barabasilab.com/ Mark Handcock - http://www.stat.washington.edu/handcock/ Matthew Jackson - http://www.stanford.edu/~jacksonm/ Jon Kleinberg - http://www.cs.cornell.edu/home/kleinber/ David Lazer - http://www.davidlazer.com/ Jure Leskovec - http://snap.stanford.edu/ Mark Newman - http://www-personal.umich.edu/~mejn/

Networks in Political Science Conferences

http://www.hks.harvard.edu/netgov/html/colloquia_NIPS.htm http://www.hks.harvard.edu/netgov/html/colloquia_HPNC2009.htm https://web.duke.edu/pn/index.html http://sitemaker.umich.edu/fordschool-pnc/home http://socsci.colorado.edu/~stwo0664/workshops.html https://polnet2013.indiana.edu/ http://polnet2014.cs.mcgill.ca http://conference.polinetworks.org

Listservs

SOCNET - <u>http://www.insna.org/pubs/socnet.html</u> PN-L - <u>PN-L@listserv.siu.edu</u>

Requirements

- 1. First Group Presentation. Your research group will be required to present your topic to the class. You should assign 1 reading for your topic (distribute to class listserv, preferably from *Nature/Science/PNAS*). You will also be required to demonstrate the use of a tool for network analysis and/or visualization (the demonstration must not significantly overlap with prior presentations).
- **2.** Class Participation. Ask questions! Ask questions of me and ask questions of your fellow classmates. Did I mention you should ask questions?
- **3.** Final Group Presentation. On the last two class days, each group will present their results and answer questions.
- 4. Final Group Paper. This paper should describe the data, methods, and results of your network analysis. It will help if you also provide at least 1-2 pages of context (briefly sketch the topic, main literature, importance of your question) but my main interest is in your analysis and results.

Tentative Schedule

Jan 4 Introduction: Meet, greet, and brainstorm.

Data introduction

Tools introduction

Citation Networks

http://fowler.ucsd.edu/network analysis and the law.pdf

Newman Text: 4.2 Citation networks 6.1 Networks and their representation 6.2 The adjacency matrix 6.3 Weighted networks 6.4 Directed networks 6.6 Bipartite networks 6.9 Degree 6.10 Paths 7.1 Degree centrality 7.2 Eigenvector centrality 7.4 PageRank 7.5 Hubs and authorities 7.6 Closeness centrality 7.7 Betweenness centrality 6.11, 8.1 Components 8.3 Degree distributions 8.4 Power laws and scale-free networks 8.5 Distributions of other centrality measures Jan 11 **Cosponsorship Networks** http://fowler.ucsd.edu/best connected congressperson.pdf

Newman Text:

3.5 Affiliation networks

Network Communities <u>http://fowler.ucsd.edu/community_structure.pdf</u>

Newman Text: 11.2, 11.6, 11.7 Community detection

No class Jan 18 – Use class time to meet with your project groups

Jan 25	Social Contagion Theory http://fowler.ucsd.edu/spread_of_obesity.pdf http://fowler.ucsd.edu/social_contagion_theory.pdf Newman Text: 3.1 The empirical study of social networks 3.2 Interviews and questionnaires 3.3 Direct observation 3.4 Data from archival or third-party records 7.13, 8.7 Homophily and assortative mixing
Feb 1	Small Experiments http://fowler.ucsd.edu/cooperative_behavior_cascades.pdf
	Big Experiments <u>http://fowler.ucsd.edu/massive_turnout.pdf</u>
	Big Natural Experiments <u>http://detecting_emotional_contagion_in_massive_social_networks.pdf</u>
Feb 8	Network Models http://fowler.ucsd.edu/turnout_in_a_small_world.pdf http://fowler.ucsd.edu/genes_and_social_networks.pdf
	Newman Text: 12.1, 12.8 Random graphs 15.1 The small-world model 14.1, 14.2 Preferential attachment 3.6 The small-world experiment 3.7 Snowball sampling, contact tracing, and random walks 8.2, 10.4 Shortest paths and the small-world effect
	ERGMs/Dyadic Independence Models http://fowler.ucsd.edu/hunter_gatherer_social_networks.pdf
	Newman Text: 15.2 Exponential random graphs 7.9, 8.6 Transitivity / Clustering Coefficient 7.10 Reciprocity
No class Feb 15 – Use class time to meet with your project groups	
Feb 22 Netwo	rks as Sensors <u>http://fowler.ucsd.edu/social_network_sensors.pdf</u> <u>http://arxiv.org/abs/1211.6512</u> 17.1, 17.2, 17.3, 17.4 Models of the spread of disease 7.8 <i>k</i> -Core centrality

- Feb 29 Group presentations
- Mar 7 Group presentations
- Mar 14 (No class) *email me a copy of your final results by Noon*.
- Apr-Sep Finish up full draft of paper and solicit feedback
- Oct-Dec Submit!