Dual Hybrid 3D Solar Module and Test Results

Poster presentation prepared for ASES Conference June 2022 by Daniel Simon with test data from report by SolarPTL

Dual Hybrid Module uses solar concentrator and solar thermal design elements

Dual Hybrid 3D Solar Module Design

- Hybrid module concentrates light and removes heat
- Employs reflectors to double the sunlight hitting each cell
- Copper fin-tube on back collects & removes thermal/heat energy
- Optical gain + heat removal improves cell performance 5x

- Left photo shows solar cells and reflectors; each cell has two flat aluminum reflectors arranged perpendicular to it
- Right photo shows back side of cell with copper fin-tube and large junction box
- Large "module size" junction box limited area available for copper fin-tube.

Hybrid Module and "control" cell tested by Solar PTL in Arizona

Performance Test Data reported by SolarPTL

Report No.: R1-3DS210623 Test Data Performance test - Side by side, as measured on November 3, 2021 ■ Natural sunlight Irradiance [W/m²

Sample 3DS001 = cell in hybrid module Sample 3DS002 = single control cell

- Cell in hybrid module produced 75% higher electrical output
 - Single cell inside hybrid module generated **3.7 W** (Average Pmax)
 - Control cell generated 2.1 W
 - Power boost includes benefit of both optical and thermal gain.

Solar Thermal Data measured by SolarPTL

Add sun in front; remove heat in back

Change in Temperature ~ 1.25C

- The inlet water temperature = 31.9C; the exit water temperature = 33.2C; flow rate = 0.187 GPM
- The water temperature increased **1.25C** (2.25F) from inlet to outlet.
- Captures the thermal energy collected from all 9 cells in the hybrid module
- ~62 W of thermal power collected by all 9 cells (aka ~6.9 W per cell)

SolarPTL Test Arranged on 2-axis Tracker

- axis tracker Tested output of a single cell
- inside hybrid module, and compared with single cell "control" (on lower left)

Test performed by Solar PTL

(Tempe, Arizona) outdoors on 2-

 Measured water temperature at hybrid module input and output

Hybrid module generated 75% more electrical power & 5x the total output (electrical + thermal)

Blue plot/right axis = temperature of cell in module Red plot/right axis = temperature of control cell

- Cell in hybrid module produced
 3.7W (electrical) + 6.9W (thermal)
 = 10.6W which is 5 times the 2.1W (electrical) the control cell produced
- Despite a warm (~32C/90F) cooling temperature, the cell in the hybrid module (blue plot) operated at a much lower temperature than the uncooled "control" cell (red plot)
- Using water below 90F for cooling would logically increase both the electrical and thermal output of the Dual Hybrid 3D Solar Module.

Single cell "control"