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http://dx.doi.org/10.1016/j.geomorph.2015.07.010

Network Models Of Steelhead Distribution
Using The River Styles Framework,
Middle Fork John Day, OR

Using rapid assessment surveys to understanding fish distributions and their
habitat

M.S. Defense Presentation
Monica Blanchard
May 1, 2015



Riverscapes Context

* Spatially explicit- where are:
* Impairments/limiting factors
* Conservation areas
* Highest restoration potential
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Research Questions

* What 1s the spatial variability in juvenile steelhead and features
of their habitat?

e Can continuous network models be used to describe the
distribution of juvenile steelhead and their habitat?



Network Juvenile Steelhead Abundance
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Columbia Habitat Monitoring Program
(CHaMP)

* Topographic Surveys e
* Reach Level L
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* Geomorphic Unit A
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Rapid Assessment Surveys

Geomorphic Unit: Reach L.evel:
* Unit type * Conductivity

. . . ° 1 1
e Unit dimensions Riparian structure

. [ ]
* Geomorphic arrangement Number of segments

* Fish cover

* Large woody debris Fish Data:

* Undercut banks * Surveyed all units

* Substrate size * Identify species

* Roughness * Count and estimate size class of

e Structural elements salmonids

* Count non-salmonids

* Calibrated with mark-recapture

Flow
Reach 2

Reach : 20x Bankfull Width

Reach 1 Segment: 5x reach



Total

: Distance
River Style - Valley Number Stream
L . Surveyed .
Abbreviation Confinement of Sites Distance *
(km)
(km)
AF Unconfined 15 2.2 17.5
LMS GB Unconfined 19 3.7 239
CV OFP Confined 30 41 29.2
CV SC Confined 6 0.8 6.9
BC EDF Partly Confined 30 7.2 23.8
LM PC DF Partly Confined 52 6.5 41.4
LS PCA Partly Confined 33 42 159
12 1.8 11.7
M PC DF Partly Confined
Total 197 30.5 170.3

* Total stream distance includes streams accessible to steelhead and which were perennial.
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River Style
UC: Alluvial Fan

~ UC: Low-Moderate Sinuosity Gravel Bed
— UC: Meandering Gravel Bed River
~— PC: Bedrock-Controlled Elongate Discontinuous Floodplain
— PC: Low Sinuosity Planform-Controlled Anabranching
— PC: Low-Moderate Planform-Controlled Discontinuous Floodplain
~— PC: Meandering Planform-Controlled Discontinuous Floodplain
7 CV: Occasional Floodplain Pockets
— CV:Boulder Bed Rapid Assessment Site

CV: Step Cascade Steelhead Abundance
— Anadromous Extent H 130fish/100m 0 5 10 20 Kilometers
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River Styles Classification and Validation



Defining River Style Attributes

Controls
Erodibility

Channel S lope
Reach

Characteristics

Valley Setting
Bankfull Width

Sinnosity

Pools/100m

Average Roughness

LWD/100m

Factor

Integer

Factor

Integer

Factor

Integer

Integer

Integer

1,7,8

b

Cm/cm

Confined
Partly-Confined

Unconfined

m

Straight (1.0-1.05),
Low Sinuosity (1.06-
1.30), Sinuous (>1.31)

Count

cm

Count

Degrees of erodibility, scale 1-8, 1 highly
erodible and 8 least erodible 2

Slope extracted every 200m from NHDplus

stream layer P

Degree to which the river is confined against

the valley margin as defined in River Styles ©

Average bankfull width over reach length

Classification of stream sinuosity over a survey
reach based on aerial imagery and

measurements in ArcGIS ¢

Number of pools per 100 m of stream

Average roughness of reach substrate.
Measured three times within each non-pool
unit and average for a unit value Units average

together for a reach value

Number of qualifying pieces of large woody

debris per 100m of stream ©

2 |SEMP (2013), ® Beechie and Imaki (2013), ¢ Brierley and Fryirs (2005), ¢ Schumm (1985), ¢ CHaMP (2013)



Random Forest Classification Results:
percent correctly classified (PCC)

River Style AF  LMSGB | CVOFP CVSC BVEDF
AF 15 0 0 0 0 0 0 0 100
LM SGB 0 18 0 0 0 1 0 0 94.7
CV OFP 0 0 30 0 0 0 0 0 100
CV SC 0 0 5 1 0 0 0 0 16.7
BC EDF 0 0 0 0 30 0 0 0 100
LM PC DF 0 0 0 0 0 48 4 0 92.3
LSPCA 0 0 0 0 0 6 27 0 81.8
M PC DF 0 0 0 0 0 6 1 5 41.7
Overall PCC 88.3
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Variable Importance Plot: River Styles
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Steelhead Abundance Models



Network Juvenile Steelhead Abundance
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Three Model Comparison

Habitat Model: Habitat-Production River Styles-Productivity
Model: Model:

All physical habitat All physical habitat River Styles, along with the
metrics that define different ~ metrics that define different  sample date and GPP
River Styles, along with the River Styles, along with the

sample date sample date and Gross

Primary Product (GPP, g
0,/L/D)
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Marginal Effect
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Summary

* Rapid assessment bridged gap in spatial extent
* Expanded the proportion of the watershed surveyed by 8-fold
* Surveys allow for surveying of previously unsurveyed River Styles and tributaries

* Validated River Styles using field measured physical habitat variables

* Using River Styles to describe physical habitat improve the models of
steelhead abundance
* Steelhead abundance responded to morphological differences among the
different River Styles

* Stream production was the most important variable influences fish
abundance
* Temperature and production was strongly correlated

* Direct and indirect effect of temperature

* Network Models in conjunction with high resolution surveys allow for
more complete understanding of variability across the riverscape



Asotin Creek Intensively Monitored Watershed (IMW)
and Watershed Assessment
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Location of Asotin Creek Intensively Monitored Watershed in southeast
Washington. Three colored tributaries comprise the IMW study area: Charley
Creek (Green), North Fork (Orange), South Fork (Yellow).



Restoration Method
Simulate a tree

Post Assisted Log
Structures

(PALS)



f Construction stats

14 km’s treated (39%)
~700 structures
3-5/100m

Hand built
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Conceptual Restoration
Design & Project Area
Descriptions — Report 2

Components

* Geomorphic

e Fish Capacity

* Cost

* Fish Distribution

Water Quality & Quantity
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Evaluating and planning stream restoration

Pre-restoration NREI NRE after 6 months Potential NREI

Wood
Structures

Design and monitoring of woody structures and their benefits
to juvenile steelhead (Oncorhynchus mykiss) using a net rate of

energy intake model Can. J. Fish. Aquat. Sci. 2017

C. Eric Wall, Nicolaas Bouwes, Joseph M. Wheaton, Stephen N. Bennett, W. Carl Saunders,
Pete A. McHugh, and Chris E. Jordan




Restoration Effectiveness
Geomorphic Unit Delineation Tool (GUT)

Digital
elevation
Model
CONVEXITY CONVEXITY PLANAR PLANAR CONCAVITY CONCAVITY
MOUND SADDLE WALL PLANE TROUGH BOWL

@@W =F 8-
F =2 e O

Tier 2 geomorphic units based on topographic
signature




Restoration Effectiveness
Tier 3 geomorphic units
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NREI: model results
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GUT: Tier 3
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Asotin Creek .- y=10.5+0.78x, Rsq=0.91, pval < 2.2e-16
NREI capacity vs
Extrapolate capacity
no. fish / reach
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Asotin Creek
NREI capacity vs
Extrapolate capacity
no. fish / m?

#fish/ m? extrapolated
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Single to multi-threaded provides biggest changes in
fish capacity







LIFE - CYCLE MODEL FOR UPPER GRANDE RONDE AND
CATHERINE CREEK SPRING CHINOOK

EVALUATION OF HABITAT RESTORATION AND POPULATION RECOVERY STRATEGIES

DECEMBER 2018

sx == == Research

THE CoLUMBIA RIVER INTER-TRIBAL FISH

Eco LoGICAL RESEARCH

Nick WEBER & Nick BOUWES
BEND OR AND PROVIDENCE UT

COMMISSION

CASEY JUSTICE & SETH WHITE
PoORTLAND OR



Restoration and climate scenarios

In the upper Grande Ronde and Catherine Creek
Weber et al. 2018

TABLE 14. SCENARIOS MODELED AFTER JUSTICE ET AL. (2017). ForR LCM
INPUTS, EACH SCENARIO IS REPRESENTED AS A PROPORTION INCREASE OR
DECREASE IN SUMMER PARR REARING AND SPAWNER CAPACITY.

Baseline model calibrated using 2010 temperature, climate, vegetation, and hydrologic

Curr .
conditions
Clim Air temperature and streamflow set to 2080s climate projections.
ClimVeg 2080s climate projections and vegetation set to potential cover and height at 75 years.

2080s climate projections, vegetation set to potential cover and height at 75 years, and

ClimPoolsVe
2 restoration resulting in increase in pool habitat.



Population response to modeled scenarios

In the upper Grande Ronde and Catherine Creek
Weber et al. 2018

Catherine Creek

SEM Scenarios

600-

Median Natural Spawners

curr Clim ClimVeg ClimPool ClimPoolVeg
Scenario

FIGURE 14. MEDIAN POPULATION SIZE OF CATHERINE CREEK NATURAL ORIGIN SPAWNING CHINOOK
BASED ON RESTORATION AND CLIMATE SCENARIOS DESCRIBED BY THE STRUCTURAL EQUATION MODEL
RELATIONSHIPS. MEDIAN POPULATION SIZE IS FROM 500 MODEL SIMULATIONS AND ASSUMES
DISCONTINUATION OF HATCHERY SUPPLEMENTATION.



Population response to modeled scenarios

In the upper Grande Ronde and Catherine Creek
Weber et al. 2018

TABLE 17. MEDIAN POPULATION SIZE OF NATURAL ORIGIN SPAWNING CHINOOK FOR 500 MODEL
ITERATIONS OF RESTORATION SCENARIOS DESCRIBED BY THE SEM SCENARIOS. ALSO SHOWING
RELATIVE DIFFERENCE OF EACH SCENARIO TO THE CURRENT CONDITIONS ('CURR’) AND QUASI
EXTINCTION RISK (PQER).

B S S
Scenario Median Natural Spawners Relative to Curr
“ Curr 17 - 0.968
e ’ 6% s
_ ClimVeg 20 18% 0.982
_ ClimPool 5 -71% 0.998
_ ClimPoolVeg 20 18% 0.952
Curr 185 - 0.028
_ Clim 114 -38% 0.15
_ ClimVeg 187 1% 0.04
_ ClimPool 202 9% 0.022
_ ClimPoolVeg 296 60% 0.002




Linking models across scales to assess restoration
potential for a threatened population of
steelhead (Oncorhynchus mykiss) in the Middle
Fork John Day River, Oregon

Middle Fork John Day River IMW Meeting
John Day, OR- April 13th, 2016

Carl Saunders
Collaborators:
Pete McHugh, Eric Wall, Sara Bangen, Nick Bouwes, Matt
Nahorniak, Joe Wheaton, Chris Jordan, lan Tattam, Jim
Ruzycki



Life-cycle models

* What’s the current viability of

steelhead in MF John Day?

* How will they benefit from:

* Thermal improvements due to
riparian restoration & flow
acquisition projects?

* In-stream structure additions
aimed at increasing rearing
capacity?

* How do answers to these ?s
vary across a range of model

assumptions?

 Evaluate reach-scale
restoration project effects for
salmon populations

Spawners
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Incorporating NREI-based capacity change into LC models
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Incorporating NREI-based capacity change into LC models
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LCM workflow

s

Field Survey Data

STl Disch Temperature AL
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/ Fish-Habitat Models
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Estimation Tools
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Model-based

Life Cycle Model

Abundance,
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Abundance

Observations
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Approaches (LM,...)

Cohort
Reconstructions




Hydraulic modelling

 Base flow discharge, 10-cm
resolution

e Delft-3D and R

* Inlet Q, outlet water level as
boundary conditions

y coordinate (m) —

* Validation/error checking W de e o m
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Habitat Suitability Models: egg capacity

I Tributaries :
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Chinook Spawner Fuzzy Habitat Suitability Model Predictions
with 2013 - 2014 Redd Locations

Mainstem MF John Day
John Day Basin, OR

Clear Creek
John Day Basin, OR /4

@ Redd with 6.8 m Buffer
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NREI Models: juvenile capacity

Tributaries .
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NREI-based site maps and distributions

-

T

Fish occupy positions with NREI >0
Size-specific territory size accounts for
competitive exclusion from adjacent
foraging locations

Carry capacity =

Y. occupied foraging locations

Percent Total Wetted Area
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I |
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LCM workflow

s

Field Survey Data

STl Disch Temperature AL
Roughness Ischarge P Availability
/ Fish-Habitat Models
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Estimation Tools
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Life Cycle Model
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Network Extrapolation: juvenile capacity

S ey S S o
Waurdopth Q104-196 @ 13-24
Water velocity Q 40-104 @ 00-13
Water temperature
Invertebrate prey
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Linear modeling:
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MFIJD restoration scenarios (KMQ2)...

Riparian shading Structural additions




Temperature restoration:

Mainstem temperature reduction
* Restore riparian vegetation
* Natural Thermal Potential

* Use NREI to model effect on carrying
capacity

e Adjust survival to account for
. ——Current conditions
tem pe ratu re rEd UCtIOﬂS 30 ~—\egetation restoration

=—Natural thermal potential

e Evaluate

25

* + Capacity

* + Productivity

20

* + Capacity & Productivity

Maximum temperature (°C)

15

25 40 55 70 85 100 115

River kilometer



NREI prediction for 4° C reduction temperature for mainstem
CHaMP reach (NTP restoration scenario)

Current July temperature (24° C) Reduced July temperature (20° C)
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O. mykiss capacity benefits of thermal restoration from Heat Source
(ODEQ)

Hab. Hab.
. |var1 wvar2 ...
X4 Xz

NREI Capacity (fish/m)

Bankfull width {m)
Vi = Bo + Bixy + -+ Boxp +ey

n
Capacity = Z Vi
i=1

Present Capacity = 1.17 M

o Climax Capacity =1.89 M
Baseline input for LCM > Restored Capacity = 1.28 M

Step 3.

Scenario inputs for LCM




Restoration impact on
survival:

* Use Bear et al 2007 to estimate
60 d survival (S) for each
scenario

* Estimate temp. dependent
survival for all mainstem
reaches (n = 115)

e C(Calculate adjustment as:

restored S
base S

base S x

Vegetation restoration: 1.02
Natural Thermal Potential: 1.13

Max temperature

15.0

20.0

25.0

30.0

J Bearetal. 2007



Spawner Abundance

6000

4000

2000 A

Benefits of thermal restoration

Status Mature Mature Max Therm Max Therm
Quo Projects Proj+Surv Potential Pot+Surv




Spawners

Spawners

Vegetation restoration (~1.5°
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Modelling benefits of structures (mainstem, Camp Cr)

RABE Log Structures

P TN T WL

Bank-
attached log

Re-run
Delft &

X bR Oy o habitat Network
ke (B TRDV S w— o P models model
Duffin (2015) U of O Thesis




Restoration of channel structure

Map affected areas post structure

addition

Initial condition Design placement Dynamic response
lFlow lFlow lF low
I I I
Post assisted log
l l I I I I l l Istructure constricts I l l 1 l |
l l l I | 1 ! 40—70% of flow width
Existing boulder | j I

Undercut bank forms; | Eddy bar deposit forms

v,
" z/&/g* may promote recruitment //éf in shadow of structure

l 1 I l or bank 11'rt:gu|«51nt}r

HHH

of new woody debrls

|
\..
l l l l I \\ - I \‘.;_,| Central bar forms where
Elongated flow diverges again; may

l 1 l l | I l“ I constriction- ﬁ:)rv::cd/'r l“ | promote channel widening
) l | Hh) I pool forms | 1’! downstream and futher

| | recruitment of new woody
b !Illl! !ll”ldebris

Legend
—= Velocity vectors
»  Wooden posts
~~  Woody debris of various sizes, shapes, and complexity
—— 12" to 18" diameter logs (variable length of 4" to 6; can be handled by two people)



Bank-attached
log

Before




Restoration design

Determined mean capacity change for
structural additions

e 8sites in Middle Fork JD

* 9sites in Camp/Lick
Structure density = 1.4 (M) —3.9 (T) / 100m
“Modified” area ~ 15% (M) — 21% (T) of
CHaMP reaches
Extrapolated site-level impacts to :

* Majority of Camp/Lick

* MFID IMW below Clear Cr.



Restoration of channel structure

NREI change map (pre—> post)

Change in NREI

condition by area

B Insufficient to
sufficient NREI

[ Dry to sufficient
NREI

[CINREI condition
unchanged
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Model proportional effect on survival for
tributary and mainstem habitat



Spawner Abundance

6000

4000
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Benefits of instream structures

Status C/L C/L MS MS Both Both
Quo +Surv +Surv +Surv




Restoration summary

Capacity effects of restoration were
minor

As modeled, survival effects caused
greatest spawner increases

1.04 — 2.16 times more spawners
under temperature restoration
1—1.1 time more spawners with
structural restoration

LCM provide means to evaluate
site-scale restoration effects on
population

Spawner Abundance

Spawner Abundance

6000

4000

2000 -

Status Mature Mature Max Therm Max Therm
Quo Projects Proj+Surv Potential Pot+Surv

6000

4000

2000 +

Status C/L C/L MS MS Both Both
Quo +Surv +Surv +Surv




Conclusions

LCM provide means to evaluate site-scale restoration
effects on population
* View impact of local restoration efforts as well as
impact of IMW

Base parameterization of LCM for MFJD is consistent with
recent monitoring data for steelhead population

Use of mechanistic models (HSI and NREI) provides
means to evaluate effects of habitat alterations



