Fishery Assessments

Bear Lake Food Web

One way to estimate population consumption

- Production based approaches (Beauchamp 2007)
- $P=G B$
- $C_{T}=P /(G / C)$
- $G / C=$ gross food conversion efficiency
- $C_{T}=2 P+3 B$
(Ney 1990)

$$
\frac{\mathrm{d} W_{t}}{\mathrm{~d} t}=H W_{t}^{d}-k W_{t}^{n}
$$

von Bertalanffy $\begin{array}{lc}\text { anabolism } & \text { catabolism } \\ d=2 / 3 & n=1\end{array}$ (1938)

The von Bertalanffy growth function,

 bioenergetics, and the consumption rates of fishCan. J. Fish. Aquat. Sci. 58: 2129-2138 (2001)

Timothy E. Essington, James F. Kitchell, and Carl J. Walters

Most Species (Excopion: ibiss and manmas) Grow Throughout their Lifes

- Fishes \diamond Bivalve * Euphausiid Δ Trees - Newt \circ Squid

2/3 Versus $3 / 4$ Scaling

- Fishes \diamond Bivalve * Euphausiid Δ Trees - Newt \circ Squid - 3/4

A General Model for the Origin of Allometric
Scaling Laws in Biology
Geoffrey B. West, James H. Brown,* Brian J. Enquisi

Lake Salad Lake Cheese

Why could growth be different?

\rightarrow More food?
\rightarrow Better quality food?
\rightarrow Don't work as hard for food?
\rightarrow Lakes are different temperatures?
\rightarrow Stress, contaminants, food webs
\rightarrow Genetically different?

Fish - Habitat Relationships

Fish Habitat

Physical Habitat
Valley Setting
Channel Morphology
Hydraulics
Substrate Composition
Cover

Stream Productivity
Fish Food
Availability and
Transfer of Energy

Stream
Temperature

Factors that Affect Stream Temperature

Channel

Morphology
-Gradient/Sinuosity
-Bank Erosion
-Stream/Floodplain Connection
-Channel Width/Depth -Channel Geometry
-Substrate

Near Stream •Withdrawals/Augmentation
Vegetation
-Vegetation Condition/Type
-Effective Shade
-Floodplain Roughness
-Bank Stability - Microclimate
(Manv of these parameters are interrelated)

Temperature

- Most physiological processes of all life are temperature dependent
- Ultimately affects growth and survival of fish across all life stages

What is Bioenergetics?

".....the study of the flow and transformation of energy in and between living organisms and their environment"

First Law of Thermodynamics

Energy Transformation

Bioenergetics

Consumption $=$ Metabolism + Waste + Growth

The Wisconsin Bioenergetics Model

What do bioenergetics have to do with the University of Wisconsin?

Jim Kitchell
Father of modern bioenergetics

Model Components:

Consumption $=$ Metabolism + Waste + Growth

All processes are temp. and size dependent

P value

- Proportion of maximum consumption
- Ranges ~ 0-1,
- P value = 1 = consuming at 100% maximum capacity based on W and T
- P value $=0.5=50 \%$
- Index of realized consumption
- Can be related to differences in food availability, behavior, food*temperature interactions

Maximum consumption isn't realistic p-value $=$ proportion of maximum consumption

Maximum consumption isn't realistic p -value $=$ proportion of maximum consumption

Consumption and Respiration \rightarrow
Size Dependent

Bioenergetics

IN
Consumption

$$
C=M+W+G
$$

All energy acquired through consumption of food

$C=G+R+W$

\downarrow

Based on allometry and temperature

$\mathrm{C}=\mathrm{Cmax} * f(\mathrm{~T}) * P$-value

Consumption function

determined ad libitum feeding experimentsTemp
0
2
4
628

Bioenergetics

OUT

Metabolism

$$
\begin{gathered}
C=M+W+G \\
\downarrow \\
(R+A+S D A)
\end{gathered}
$$

Bioenergetics

OUT

Metabolism

```
C=M +W +G
    \downarrow
(R+A+SDA)
    Respiration = metabolism at rest (basal metabolism)
```


Bioenergetics

OUT

$C=M+W+G$
\downarrow
$(\mathrm{R}+\mathrm{A}+\mathrm{SDA})$
Active metabolism = cost of activity

Respiration function determined respirometer experiments

Temp

0

2

4

6

28

To estimate activity cost, you would do this across a range of velocities

Measuring Metabolism

Figure 10.2 A basic flow-through respirometer. Fresh water continuously enters a cylindrical fish chamber through a baffle plate. Baffle holes are incrementally angled from horizontal in the center of the plate to the angle of the expansion cone at the margins. Dye studies show that this design minimizes eddies and dead spaces in the respirometer. Blood can be sampled through an optional vascular cannula that is led out of the respirometer via a hypodermic needle shaft inserted through a rubber stopper. (From Cech et al. 1979.)

> 5 degrees 10 degrees 15 degrees

5 grams
50 grams
500 grams

Figure 10.1 A basic static respirometer. Large-diameter tubes are used to flush the respirometer between experiments. The small-diameter tube is used to obtain water samples for O_{2} analyses.

Bioenergetics

OUT

Metabolism

$$
C=M+W+G
$$

$(\mathrm{R}+\mathrm{A}+\mathrm{SDA}) \longrightarrow$ Specific Dynamic Action
Energetic costs of processing food Deamination of proteins etc.
Modeled as a constant proportion of food consumed
(~ 15-17\%)

Bioenergetics

$C=M+W+G$

$$
(F+U)
$$

Waste = Egestion (Feces) + Excretion (Urine)
Depends on how efficiently animal digests food Mixed diet $=80 \%$
Carnivores = 90\%
Herbivores = 80\%
Modeled:
constant proportion of diet dependent on T and ration size relatively insensitive

Bioenergetics

Growth

$$
\begin{aligned}
C=M+W+G & \\
(\Delta B+G) & \begin{array}{l}
\text { Growth }=\text { synthesis of fish tissue/ time } \\
\text { i.e., change in biomass } \\
\text { Somatic } \\
\text { Gonad }
\end{array}
\end{aligned}
$$

Solve for consumption (estimate P value iteratively based on growth)

Can also organize equation in terms of growth..
$\Delta B=C-(R+A+S)-(F+U)-G$

Can solve for any of the different parameters of the equations....hence the power of bioenergetics

What do we need to run the model?

Measuring fish growth

Measuring Fish Growth

What do we need to run the model?

Temperatures where fish live...

- alewife $-20^{\circ} \mathrm{C}$
- bluegill $-29^{\circ} \mathrm{C}$
- coho salmon - $15^{\circ} \mathrm{C}$
- largemouth bass $-27.5^{\circ} \mathrm{C}$
- muskellunge $-26^{\circ} \mathrm{C}$
- northern pike $-24^{\circ} \mathrm{C}$
- rainbow smelt $-13^{\circ} \mathrm{C}$
- rainbow trout $-20^{\circ} \mathrm{C}$
- striped bass $-21.6^{\circ} \mathrm{C}$
- walleye $-22^{\circ} \mathrm{C}$
- yellow perch $-26^{\circ} \mathrm{C}$
- smallmouth bass $-29^{\circ} \mathrm{C}$
- sea lamprey $-18^{\circ} \mathrm{C}$
- chinook salmon- $15^{\circ} \mathrm{C}$

What do we need to run the model?
What a fish eats ...

What do we need to run the model?

Prey and Predator Energy Densities ...

Inverts ~ 2500 j/g wet mass
Snails - $18000 \mathrm{j} / \mathrm{g}$ dry mass

Yellow Perch - $5000 \mathrm{j} / \mathrm{g}$ wet mass
Crayfish - $3766 \mathrm{j} / \mathrm{g}$ wet mass

Alewife - $7225 \mathrm{j} / \mathrm{g}$ wet mass

How have bioenergetic models been used in fisheries?

Sea Lamprey Control and Lake Trout

Control of sea lamprey will result in a 5% increase in lake trout survival

How much will rainbow smelt mortality increase?

Calculate increase in trout biomass, then use bioenergetics to calculate increase in consumption of rainbow smelt

Rainbow smelt mortality will increase by 3 percent

(La Bar 1993)

Alewives and P Cycling in Lake Michigan

Alewives may promote phytoplankton growth by recycling P through egestion and excretion

Question: How much do alewives in Lake Michigan contribute to phosphorus regeneration?

Bioenergetics nutrient analysis was used to find that 12,000 metric tons of P were regenerated per year

Strong year classes may result in algal blooms

(Kraft 1993)

Climate change and sockeye salmon production

Climate change may result in increased temperatures and less upwelling

How will this affect production of sockeye salmon?

If temperatures increase 2-4 degrees C , the combination of lower food availability and higher temperatures would result in a 10-30\% decrease in adult mass may also lead to lower juvenile survival

