

Best Practices for Climate Action and Sustainability at Kokilaben Dhirubhai Ambani Hospitals

Kokilaben Dhirubhai Ambani Hospital (KDAH) in Mumbai is a leader in integrating climate action and sustainability into its healthcare operations. With a commitment to minimizing environmental impact, KDAH has adopted comprehensive strategies across various domains to reduce its carbon footprint while maintaining high standards of patient care. This article explores the hospital's best practices in facility management, biomedical equipment, laundry services, and sustainable procurement, illustrating how these efforts contribute to a healthier environment and a more sustainable future.

1. Facility Management

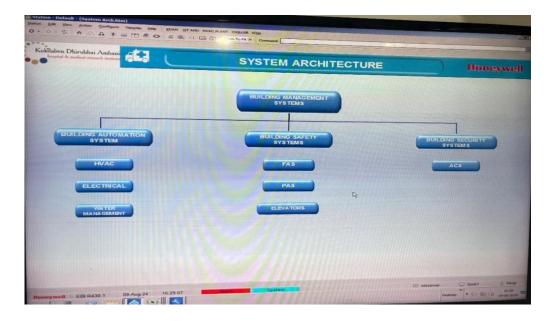
At KDAH, facility management is a critical aspect of sustainability. The hospital has implemented energy-efficient systems, including LED lighting, advanced HVAC systems, and water-saving technologies. Initiatives such as switching to renewable energy sources, like solar panels and wind energy, and optimizing energy consumption through building management software, highlight KDAH's commitment to reducing its environmental impact.

2. Bio Medical Equipment

KDAH prioritizes the use of environmentally friendly biomedical equipment. The hospital collaborates with leading manufacturers like Siemens for PET/CT systems and BD for sustainable medical supplies, ensuring that their technology choices align with global environmental standards.

3. Laundry Services

In partnership with Lindström, KDAH has outsourced laundry services that are environmentally friendly, using organic chemicals and energy-efficient processes. This collaboration ensures that the hospital's linen management contributes to a reduction in water and chemical pollution, energy consumption, and waste generation, reinforcing KDAH's commitment to sustainability.


4. Sustainable Procurement

KDAH's procurement practices reflect its dedication to sustainability. By tying up with suppliers like BD, who adhere to an environmentally friendly code of conduct, the hospital ensures that its supply chain supports its climate action goals. Sustainable sourcing, energy-efficient products, and waste reduction are at the core of KDAH's procurement strategy, making it a leader in sustainable healthcare practices.

1: Facility Management

- 1. Implementation of Honeywell's BMS (Building Management Software): It is playing a significant role in contributing to climate action and sustainability. BMS is focused on reducing the environmental impact of building, which are major contributors to global energy consumption and carbon emissions.
 - a. BMS enables us to monitor and optimize energy usage down to the device level, helping to meet carbon reduction goals. It uses AI and ML to identify energy conservation opportunities, thereby enhancing efficiency and sustainability across the building.
 - b. BMS helping us not only to ensure energy efficiency but also focuses on improving indoor air quality, ensuring that buildings are environmentally friendly. BMS helping us to meet stringent sustainability standards, reduce carbon footprints, and support global efforts toward achieving carbon neutrality.

2. LED Lighting and Energy Efficiency

- Initiative: Replacing traditional lighting with energy-efficient LED lights, transitioning from CFL to LED, and implementing a thyristor-based capacitor bank.
- Impact: Significant reduction in energy consumption and operational costs. A detail the transition and energy savings.

Open	access	saving statemen	Rs. Lacs	296.5					
Sr.No.	Month	Unit consumed	Unit rate	Total Bill Amount	Gepl bill amt	Tata / R infra bill amt.	Rinfra / Tata + GEPL	Saving due to Open	
		(KWH)			'			Acceess	
1	Nov-14	1,332,360	10.62	14,151,761	1,372,998	12,778,763	14,151,761	1,543,4	
12	Dec-14	1,287,048.00	11.62	14,960,790.46	3,604,570	11,356,220	14,960,790	200,0	
3	Jan-15	1,242,600	8.05	10,003,150				4,634,	
4	Feb-15	1,196,172	11.07	13,242,136	3,265,686	9,976,450	13,242,136	848,	
5	Mar-15	1,350,528	11.08	14,961,215	3,564,555	11,396,660	14,961,215	948,	
6	Apr-15	1,384,848	9.60	13,295,749	3,511,449	9,784,300	13,295,749	1,632,	
7	May-15	1,435,655	9.50	13,635,421	3,913,071	9,722,350	13,635,421	1,840,	
8	Jun-15	1,394,606	8.18	11,405,712	3,967,112	7,438,600	11,405,712	3,628,	
9	Jul-15	1,472,858	8.27	12,183,876	4,140,836	8,043,040	12,183,876	3,693,	
10	Aug-15	1,426,640	8.29	11,822,264	4,084,414	7,737,850	11,822,264	3,556,	
11	Sep-15	1,385,409	8.23	11,395,579	3,964,069	7,431,510	11,395,579	3,539,	
12	Oct-15	1,425,860	8.27	11,786,906	4,075,186	7,711,720	11,786,906	3,583,	
ove	mber 20	15 to October 20	16				Rs. Lacs	525.4	
ove	mber 20	16 to October 20	17				Rs. Lacs	166.8	
November 2017 to October 2018 Rs. Lacs									
November 2018 to August 2019 Rs. Lacs									
otal Saving from Nov 2014 to July 2018 Rs. Lacs									

3. Motion Sensors: Installed 650 motion sensors for lighting control to reduce energy waste

Existing Led Light With Motion Sensor									
	Present	Proposed with sensor							
	1 x 18 watts Down	1 x 18 watts Down							
Existing Light to be replaced by LED Light	light	light							
Qty installed	1000	1000							
Cost of motion sensor		1250							
total investment	0	1250000							
Power Consumption in KWH per tube light per									
day considering 24 hours operation									
[watt / 1000 x 11 = KWH]	0.432	0.198							
Power Consumption in KWH per light per year	157.68	72.27							
Power Consumption in KWH for total no of									
fittings per year	157680	72270							
Power Consumption in Rs. per year unit rate									
considered Rs. 11/ per unit	1734480	794970							
Saving Rs.		939510							
Pay back period calculation									
total investment for sensor	1250000								
Total saving in year	939510								
Difference	310490								
Pay back period	15 months								

4. Motors and Pumps

- Initiative: Installation of energy-efficient motors and replacing old pumps with Kirloskar energy-efficient pumps in the plant room (March 2024).
- Impact: Enhanced operational efficiency and reduced energy consumption.

5. Refrigerants

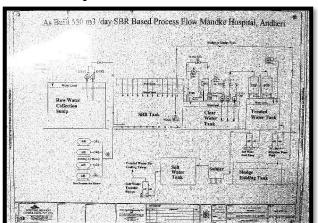
- **Initiative**: Transition planning to environmentally friendly refrigerants such as R404A and R134A.
- **Impact**: Reduced greenhouse gas emissions, aligning with environmental regulations and sustainability goals.

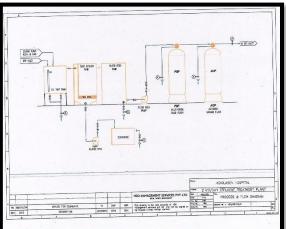
6. Mini Bar Refrigerators

- **Initiative**: Replaced compressor minibars with heat absorption minibars in inpatient rooms.
- **Impact**: Energy conservation and reduced operational costs.

7. Chillers and HVAC Systems

Initiative: Use of R123 chiller gas and energy-efficient centrifugal chillers (600 TR).
 Upgrade of HVAC systems, including AHU (Air Handling Units) and FCUs (Fan Coil Units), for better efficiency.


• **Impact**: Lower KW/TR, resulting in decreased energy usage and improved cooling efficiency. Regular monitoring ensures optimal performance.


8. Renewable Energy

- Initiative: Utilization of open access energy from windmills for electricity.
- **Impact**: Reduction in carbon footprint and operational costs, contributing to long-term sustainability.

9. Recycling Programs

- Comprehensive recycling programs .STP plant used for recycling 550 cubic meters for gardening and flushing. ETP: Installed a 2 KL/day system to treat lab waste effectively.
- Impact: Conservation of resources and reduction in environmental impact.

10. Heat-Resistant Paints

- **Initiative**: Application of heat-resistant paints in cooking areas to reduce ambient temperature, with plans to implement across the hospital using Japanese nanotechnology.
- **Impact**: Improved energy efficiency in temperature management.

11. Preventive Maintenance and Monitoring

- **Initiative**: Regular chiller rounds for hourly monitoring of energy consumption and installation of heat pumps to replace PNG gas for hot water generation.
- Impact: Enhanced energy management and reduced greenhouse gas emissions.

12. Water Conservation

- Initiative: Installed of water-saving devices and replacement of flush valves with fixed quantity flushing cisterns in public toilets.
- Impact: Significant water conservation.

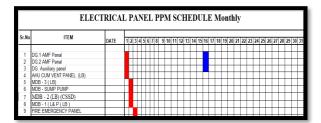
13. Fire and Safety

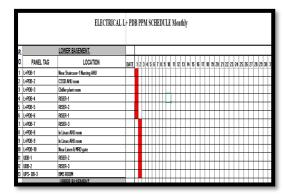
- **Initiative**: Regular testing and audits of fire safety equipment and systems, with upgrades based on safety rounds.
- **Impact**: Ensured compliance with safety regulations and enhanced protection for patients and staff.

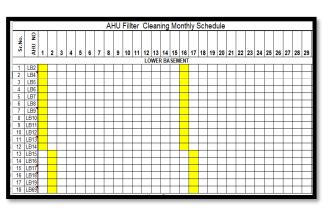
14. Staff Engagement and Education

- **Initiative**: Ongoing education and engagement programs to share best practices with staff, promoting a culture of sustainability within the organization.
- **Impact**: Empowering staff to contribute to sustainability efforts, leading to better overall outcomes.

15. Natural Light: Maximize the use of natural light to reduce the need for artificial lighting. All the inpatient rooms.


- **16.** Energy audit: An upcoming energy audit to identify further opportunities for improvement.
 - a. Regular Electricity Audits: **Electricity audit** is a component of a broader **energy audit** done in the month of June 2024. It examines the consumption, efficiency, and cost of electricity used in a facility. It includes analysing lighting systems, electrical motors, HVAC systems, and other electrically powered equipment to find areas for improvement


17. Preventive maintenance and Calibrations: Regular maintenance of equipment, such as HVAC systems, motors, and lighting, ensures they operate at peak efficiency. Well-maintained equipment consumes less energy, which in turn reduces greenhouse gas emissions associated with electricity production.



- **a.** Timely Calibration: Proper calibration of sensors, thermostats, and other control devices ensures accurate readings and optimal operation.
- b. Reduction in Waste and Emissions: Reducing the likelihood of equipment failure minimizes unexpected shutdowns or malfunctions that could lead to increased emissions or waste.
- c. Both preventive maintenance and timely calibration contribute to reducing the overall carbon footprint of a facility by optimizing energy use, reducing waste, and extending the life of equipment. This contributes to global efforts to mitigate climate change.

Master List of Measuring Instruments (Pressure Gauge)										
SR.	Inst. Name	Make	ID. No.	Range L/C Dept.			Location	Cali. Date	Due Date	
1	Pressure Gauge	Guru	CH-01/PG-01	0 - 10.6 Kg/cm ²	0.2	AC Plant	AC Plant - 11 VP (In)	11-08-2023	10-08-2024	
2	Pressure Gauge	Guru	CH-01/PG-02	0 - 10.6 Kg/cm ²	0.2	AC Plant	AC Plant - 11 VP(Out)	11-08-2023	10-08-2024	
3	Pressure Gauge	TKL	CH-01/PG-03	0 - 10.6 Kg/cm ²	0.2	AC Plant	AC Plant - 1 Condenser (In)	11-08-2023	10-08-2024	
4	Pressure Gauge	Guru	CH-01/PG-04	0 - 10 Kg/cm ²	0.2	AC Plant	AC Plant - Condenser(out)	11-08-2023	10-08-2024	
5	Pressure Gauge	Guru	CH-02/PG-01	0 - 10 Kg/cm ²	0.2	AC Plant	AC Plant - IVP(IN)	11-08-2023	10-08-2024	
6	Pressure Gauge	TKL	CH-02/PG-02	0 - 10.6 Kg/cm ²	0.2	AC Plant	AC Plant - 2 IVP (Out)	11-08-2023	10-08-2024	
7	Pressure Gauge	TKL	CH-02/PG-03	0 - 10.6 Kg/cm ²	0.2	AC Plant	AC Plant -2 Condenser (In)	11-08-2023	10-08-2024	
8	Pressure Gauge	Stenco	CH - 02/PG - 04	0 - 10 Kg/cm ²	0.2	AC Plant	AC Plant - 2 Condenser (Out)	11-08-2023	10-08-2024	
9	Pressure Gauge	TKL	CH-03/PG-01	0 - 10.6 Kg/cm ²	0.2	AC Plant	AC Plant - 3 IVP (In)	11-08-2023	10-08-2024	
10	Pressure Gauge	Guru	CH - 03/PG - 02	0 - 10 Kg/cm ²	0.2	AC Plant	AC Plant - 3 IVP(Out)	11-08-2023	10-08-2024	
11	Pressure Gauge	Guru	CH - 03/PG - 03	0 - 10 Kg/cm ²	0.2	AC Plant	AC Plant - 3 Condenser (In)	11-08-2023	10-08-2024	
12	Pressure Gauge	TKL	CH - 03/PG - 04	0 - 10.6 Kg/cm ²	0.2	AC Plant	AC Plant - 3 Condenser (Out)	11-08-2023	10-08-2024	

	Master List of Measuring Instruments (Glass Thermometer)										
		Mas		easuring Inst	rum	ents (Glass The	ermometer)		ļ		
12	Glass Thermometer	RSI	CH - 03/TG - 04	0 - 50°C	1	AC Plant	AC Plant – 3 Condenser (Out)	11-08-2023	10-08-2024		
13	Glass Thermometer	RSI	CH-04/TG - 01	0 - 50°C	1	AC Plant	AC Plant – 4 EVP (In)	11-08-2023	10-08-2024		
14	Glass Thermometer	RSI	CH-04/TG-02	0 - 50°C	1	AC Plant	AC Plant – 4 EVP(Out)	11-08-2023	10-08-2024		
15	Glass Thermometer	RSI	CH-04/TG-03	0 - 50°C	1	AC Plant	AC Plant - 4 Condenser (In	11-08-2023	10-08-2024		
16	Glass Thermometer	RSI	CH-04/TG-04	0 - 50°C	1	AC Plant	AC Plant - 4 Condenser (Out)	11-08-2023	10-08-2024		
17	Glass Thermometer	RSI	CH-05/TG-01	0 - 50°C	1	AC Plant	AC Plant - 5 EVP (In)	11-08-2023	10-08-2024		
18	Glass Thermometer	RSI	CH-05/TG-02	0 - 50°C	1	AC Plant	C PlantA - 5 EVP(Out)	11-08-2023	10-08-2024		
19	Glass Thermometer	RSI	CH-05/TG-03	0 - 50°C	1	AC Plant	AC Plant – 5 Condenser (In)	11-08-2023	10-08-2024		
20	Glass Thermometer	RSI	CH-05/TG-04	0 - 50°C	1	AC Plant	AC Plant - 5 Condenser (Out)	11-08-2023	10-08-2024		
		Mas	ter List of Me	easuring Instr	um	ents (Temperat	ure Gauge)				
SR.	Inst. Name	Make	ID. No.	Range	L/C	Dept.	Location	Cali. Date	Due Date		
1	Temperature Gauge	RSI	PL-01/TG-01	0 - 150°C	1	Plumbing Plan Room	OT Mixing Tank Coil Supply	11-08-2023	10-08-2024		
2	Temperature Gauge	RSI	PL-01/TG-02	0 - 150°C	1	Plumbing Plan Room	OT Mixing Tank Coil Supply Return	11-08-2023	10-08-2024		
3	Temperature Gauge	RSI	PL-01/TG-03	0 - 150°C	1	Plumbing Plan Room	Boiler	11-08-2023	10-08-2024		
4	Temperature Gauge	RSI	PL-01/TG-04	0 - 150°C	1	Plumbing Plan Room	TO PHE Out	11-08-2023	10-08-2024		
5	Temperature Gauge	RSI	0 - 300°C	0 - 150°C	1	Plumbing Plan Room	OT Mixing Tank	11-08-2023	10-08-2024		
	-						_				
	Maste	er List o	f Measuring	Instruments (Ter	nperature Con	troller With Sensor)				
SR.	Inst. Name	Make	ID. No.	Range	L/C	Dept.	Location	Cali. Date	Due Date		
1	Temperature Controller With Sensor	RSI	00011/TCS-G/K01	-50 to -50°C	1	Plumbing Plan Room	Kitchen Cold Room	11-08-2023	10-08-2024		
	I Temperature controller with Jerson 185 [00011/103-07/801] Set 0.5 C. T. Hamsong Harmonin McCherrotta Room 12-06-2025 [20-06-2024]										

18. Additional Initiatives

- Tank Cleaning: Regular maintenance of water tanks to ensure cleanliness and efficiency.
- Old Pump Replacement: Replaced insulation in chilled plants to prevent energy loss.
- **Flooring Replacement**: Kota flooring with vinyl flooring for better durability and efficiency.

2. The Role of Medical Equipment at at Kokilaben Dhirubhai

Ambani Hospitals

1. Replaces Old Biograph 40 PET CT with Siemens Biograph Vision 600 PET/CT System

The Siemens Biograph Vision 600 PET/CT system is designed with sustainability in mind. Siemens Healthineers is committed to reducing carbon emissions and enhancing resource efficiency in its products. The Biograph Vision 600 incorporates advanced imaging technologies that require **lower doses of radioactive tracers**, which helps minimize the environmental impact associated with medical imaging procedures.

- Reduced Waste: The design emphasizes reducing waste through the efficient use of materials and components
- Sustainability Strategy: The system aligns with Siemens' broader environmental strategy, which includes the development of medical equipment with a minimized

• Energy Efficiency: The system is engineered to optimize energy consumption, making it more environmentally friendly compared to traditional imaging systems.

KDAH is adopting climate action and sustainability measures, and medical equipment plays a significant role in these efforts. The implementation of advanced technologies, energy-efficient devices, and environmentally friendly practices in medical equipment can substantially reduce the environmental impact of healthcare operations. Below is a detailed report on climate action and sustainability at Kokilaben Dhirubhai Ambani Hospitals , focusing on the role of medical equipment.

2.. Energy-Efficient Equipment in Operating Theatres

Servo-Air Ventilators: The use of ventilators with turbine technology, such as the new Servo air ventilators that only require an oxygen supply, eliminates the need for air compressors. This not only enhances patient safety but also reduces energy consumption and operational costs.

LED Lighting: Replacing OT halogen lights with LED lights (Dr. Mach) significantly reduces energy consumption. LEDs are more energy-efficient and have a longer lifespan, contributing to lower carbon emissions and reduced waste.

3. Laboratory and Diagnostic Systems

 Roche TLA and Cobas Systems: Advanced laboratory systems, the Roche TLA and Cobas Pro analyzers optimize the use of reagents and samples, reducing waste and

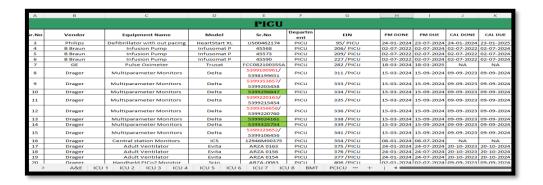
consumption. These systems are designed to be efficient, minimizing the ecological footprint of laboratory operations.

4. Advanced Diagnostic and Treatment Equipment

Digital OPG Machine: The installation of the Carestream digital OPG machine enhances imaging efficiency while reducing radiation exposure and energy use.

Ultrasonic Surgical Systems: The CUSA Soring machine operates using ultrasonic waves, which require less energy compared to traditional surgical devices that might use mechanical or thermal methods. This energy efficiency contributes to lower overall power consumption in surgical settings, aligning with climate action goals to reduce energy use.

4. Infrastructure and Facility Management


- Air Compressors and Pneumatic Chutes: Upgrading to modern air compressors and installing pneumatic chutes (e.g., Swisslock) for the efficient transport of materials within the hospital reduces energy use and enhances operational efficiency.
- Alarm Panels for Gas Pressure Monitoring: Installed alarm panels in ICUs and OTs
 to monitor gas pressure ensures the efficient use of medical gases, reducing waste and
 potential emissions.

6. Timely Preventive Maintenance and Calibration for all Bio- Medical equipments:

- Regular Maintenance: Implementing preventive maintenance schedules for all
 medical equipment ensures that devices operate at peak efficiency, reducing energy
 consumption and prolonging equipment life. This approach minimizes the need for
 frequent replacements, thereby reducing the environmental impact associated with the
 production and disposal of medical devices.
- Timely Calibration: Proper calibration of medical devices ensures accuracy and
 efficiency, preventing unnecessary energy use and waste. Accurate devices also reduce
 the risk of overuse of resources, such as energy or consumables, during medical
 procedures.

Sr.N(▼	Vendor	Equipment Name -	Model. ✓	Sr.No -	Dept. →	EIN. ▼	PM Done. 💌	PM Due.	Cal Done. 🔻	Cal Due.
1	Covidien	Cerebral Somatic	INVOS	14-G11506X	OT	3082	08-09-2022	07-03-2023	NA	NA
		Oximeter								
2	Philips	Defibrillator	Heart Start XL	US00462171	OT	84	24-01-2024	23-07-2024	24-01-2024	23-01-2025
3	Philips	Defibrillator	Heart Start XL	US00462175	ОТ	85	24-01-2024	23-07-2024	24-01-2024	23-01-2025
4	Philips	Defibrillator	Heart Start XL	US00462168	OT	89	24-01-2024	23-07-2024	24-01-2024	23-01-2025
34	GE	Pulse Oximeter.	Trusat	FCC08200123SA	ОТ	267	22-07-2023	21-07-2024	NA	NA
35	GE	Pulse Oximeter.	Trusat	FCC08210058SA	ОТ	269	22-07-2023	21-07-2024	NA	NA
89	Karl Storz	Morcellator	ROTOCUT G1	BB2113	OT	774	28-02-2024	27-02-2025	NA	NA
90	Medtronic	ACT Machine	ACT Plus Machine	ACT 2002167	ОТ	812	10-05-2024	09-11-2024	NA	NA
91	Medtronic	Cell Saver	Autolog	ATLG012218	OT	814	04-03-2024	03-09-2024	NA	NA
92	Philips	Defibrillator	Heart Start XL	US00575380	ОТ	910	24-01-2024	23-07-2024	24-01-2024	23-01-2025
93	Medtronic	ACT Machine	ACT Plus Machine	ACT 2002186	ОТ	1030	10-05-2024	09-11-2024	NA	NA
94	Stryker	Core Motor	5400-050-000	816202843	OT 5th	1051	02-05-2024	01-11-2024	NA	NA
5		Controller			floor					
95	B L Lifescience	Head Light Band	Luxtec	R10998	OT	1103	NA	NA	NA	NA
5	Pvt. Ltd.									
96	B L Lifescience	Head Light Band	Luxtec	R11000	ОТ	1104	NA	NA	NA	NA
7	Pvt. Ltd.									

	Biochemistry / Immunology											
Sr.	Vendor	Name Of Equipment (EIN)	Model	Sr. No.	EIN	CAL Done	CAL Due	PM Done	PM Due			
1	Olympus	Laboratory Microcope (412)	CX-21	7M06143	412	NA	NA	10-02-2024	09-08-2024			
2	Biotek	Semi Automated ELISA reader (687)	ERBA Microscan	215208	687	30-08-2023	29-08-2024	30-08-2023	29-08-2024			
3	Remi	Cyclo Mixer (818)	CM101	HBCM 1380	818	22-05-2024	21-11-2024	22-05-2024	21-11-2024			
4	Transasi a	Compact automated ELISA washer (1143)	ERBA smartwash III	317076	1143	NA	NA	08-02-2024	07-02-2025			
5	Olympus	D Fluroscence unit (for microscope) (157	FRAEN Blue 480nm	NA	1572	NA	NA	10-02-2024	09-08-2024			
6	Biorad	Hemoglobin Machine (1713)	D10	DJ5D025513	1713	01-04-2024	30-10-2024	01-04-2024	30-10-2024			
7	Piometr	Immuno Assay Analyser (1725)	Mini Vidas	IVD 1204863	1725	23-06-2023	22-06-2024	22-12-2023	21-06-2024			
8	Olympus	Aqua Filter for Microscope (1902)	LED	NA	1902	NA	NA	10-02-2024	09-08-2024			
9	Abbott	Immuno Assay Analyzer (2951)	2000iSR	ISR53148	2951	13-12-2023	12-12-2024	13-12-2023	12-06-2024			
10	Discount	Immunofluorosence Microscope (2988)	Eurostar III Plus	16627	2988	NA	NA	13-02-2024	12-08-2024			
11	CPC Diagnost	Elisa Reader	Euroimmuno I-2P	6238000177	3353		21-08-2024					
12	IKA	High Speed Vortexer	VORTEX 4 digital	6.202898	3662	12-01-2024	11-07-2024	12-01-2024	11-07-2024			
13	Remi	centrifuge	Neya 6	ZGLN-30654	3753	22-05-2024	21-11-2024	22-05-2024	21-11-2024			
14	Gonotec	Osmometer	Osmomat 030	81117	3780	24-06-2023	23-06-2024	24-06-2023	23-06-2024			
15	Kattiome	ABG Machine	ABL 800 Flex	754R2754N0007	3816	18-12-2023	17-06-2024	18-12-2023	17-06-2024			
	Kadrome Kadrome	ABG Machine	ABL 800 Flex	754R2739N0018	3817	18-12-2023	17-06-2024	18-12-2023	17-06-2024			
17		ABG Machine	ABL 800 Flex	754R2754N0008	3818	30-12-2023	29-06-2024	30-12-2023	29-06-2024			
18	Eppendo	Centrifuge	5702R	5703KK722085	3868	22-05-2024	21-11-2024	22-05-2024	21-11-2024			
19	REMI	Centrifuge	Neya 6	ZHKN-44633	3874	22-05-2024	21-11-2024	22-05-2024	21-11-2024			
20	REMI	Rotary Shaker	RS-12R	ZHH5-30290	3875	22-05-2024	21-11-2024	22-05-2024	21-11-2024			
21	bia Servio	en Analyzer Capillary Gel Electophoresis Sy	Minicap FP	95256	3887		15-10-2024					
2.2	Fisher So	-40 Deen Frezeer	FD400401.V	115710801210324	3889	12-01-2024	11-07-2024	12-01-2024	11-07-2024			
<	>	Biochem-Immuno HLA Haemat	Histopath Molbi	o & Genetics Bloo	d Bank Mici ··· +							

3. Outsourcing laundry services

Outsourcing laundry services to an environmentally friendly provider like Lindström, which uses organic chemicals, is a significant step toward promoting sustainability in healthcare. Here's how it contributes to climate action:

1. Reduced Chemical Pollution:

 By using organic chemicals, Lindström minimizes the release of harmful substances into the water and air. Traditional laundry services often rely on harsh chemicals that can contribute to water pollution and have broader environmental impacts.

Outsourcing to a provider like Lindström aligns with broader climate action goals by ensuring that laundry services are conducted in an environmentally responsible manner, contributing to the overall sustainability efforts within the hospital.

4.Sustainable Procurement

Tying up with suppliers like BD (Becton, Dickinson, and Company), who adhere to an environmentally friendly code of conduct, contributes significantly to a hospital's sustainability and climate action efforts. BD's Code of Conduct emphasizes environmental responsibility in several ways.

5. Sustainable Waste Management Practices

KDAH is committed to promoting sustainable waste management and reducing environmental impact.

- Macerators are used to safely dispose of contaminated items such as bandages, cloth, and gloves. This reduces manual handling, improves infection control, and minimizes landfill burden.
- 100% source segregation of biomedical waste ensures compliance with BMW 2016 guidelines and enhances recycling and recovery.
- Partnerships with **approved vendors** ensure environmentally sound disposal and treatment of biomedical and hazardous waste.

- Reduction of **plastic use**, **chemical waste**, **and paper consumption** supports a circular economy approach.
- Sustainability practices, including **eco-friendly procurement** and **ESG compliance in vendor agreements**, further strengthen responsible operations.

Through these practices, KDAH actively contributes to **SDG 12 targets (12.4, 12.5, 12.6, and 12.8)** by promoting safe, efficient, and sustainable consumption and production patterns.

Kokilaben Dhirubhai Ambani Hospital (KDAH) in Mumbai has set a benchmark for integrating climate action and sustainability into healthcare operations. Through strategic initiatives in facility management, the use of eco-friendly biomedical equipment, environmentally responsible laundry services, and sustainable procurement practices, KDAH demonstrates that high-quality patient care and environmental stewardship can go hand in hand. These efforts not only contribute to global climate goals but also create a healthier, more sustainable environment for the community. As healthcare institutions globally strive to reduce their environmental impact, KDAH's approach serves as a model of excellence, proving that sustainability in healthcare is not just achievable but essential.