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In Brief
Protein turnover rates in adult
animals differ greatly from cell
culture and require careful
considerations of precursor
equilibration and availability. This
study by Hammond et al.
compared two approaches to
measurement of protein turnover
rates in the mouse, across four
mouse tissues. Labeling with
stable isotope–labeled amino
acids or by heavy water had
different analytical complications
but yielded comparable turnover
rates after optimization.
Analytical and data filtering
recommendations are provided
for protein turnover studies in
animals.
Highlights
• Controlled comparison of heavy water or amino acid labeling for protein turnover.• Delays in amino acid precursor labeling mostly affect high turnover proteins• Both methods produced similar turnover rates after adjustment of precursor kinetics.• Recommendations for analytical workflows for protein turnover studies in animals.
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TECHNOLOGICAL INNOVATION AND RESOURCES
Harmonizing Labeling and Analytical Strategies
to Obtain Protein Turnover Rates in Intact Adult
Animals
Dean E. Hammond1,‡ , Deborah M. Simpson1 , Catarina Franco1 ,
Marina Wright Muelas2 , John Waters3, R. W. Ludwig4 , Mark C. Prescott1,
Jane L. Hurst3 , Robert J. Beynon1,* , and Edward Lau4,*‡
Changes in the abundance of individual proteins in the
proteome can be elicited by modulation of protein syn-
thesis (the rate of input of newly synthesized proteins into
the protein pool) or degradation (the rate of removal of
protein molecules from the pool). A full understanding of
proteome changes therefore requires a definition of the
roles of these two processes in proteostasis, collectively
known as protein turnover. Because protein turnover oc-
curs even in the absence of overt changes in pool abun-
dance, turnover measurements necessitate monitoring
the flux of stable isotope–labeled precursors through the
protein pool such as labeled amino acids or metabolic
precursors such as ammonium chloride or heavy water. In
cells in culture, the ability to manipulate precursor pools
by rapid medium changes is simple, but for more complex
systems such as intact animals, the approach becomes
more convoluted. Individual methods bring specific com-
plications, and the suitability of different methods has not
been comprehensively explored. In this study, we
compare the turnover rates of proteins across four mouse
tissues, obtained from the same inbred mouse strain
maintained under identical husbandry conditions,
measured using either [13C6]lysine or [2H2]O as the label-
ing precursor. We show that for long-lived proteins, the
two approaches yield essentially identical measures of the
first-order rate constant for degradation. For short-lived
proteins, there is a need to compensate for the slower
equilibration of lysine through the precursor pools. We
evaluate different approaches to provide that compensa-
tion. We conclude that both labels are suitable, but careful
determination of precursor enrichment kinetics in amino
acid labeling is critical and has a considerable influence
on the numerical values of the derived protein turnover
rates.
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Changes in the proteome can be achieved by adjustment of
the input into a protein pool (synthesis) or removal of a protein
from the pool (degradation), the two processes constituting
protein turnover. The simplest model of proteostasis, which is
undoubtedly an oversimplification, has three parameters (pool
size, synthesis, and degradation), linked by zero-order syn-
thesis (the rate of synthesis is insensitive to the pool size) and
first-order degradation (a proportion of the protein pool is
degraded per unit time). At steady state, the unchanging pool
size is given by the balance between the opposing fluxes of
synthesis (molecules/time) and removal (protein pool multi-
plied by the fractional rate of degradation; thus, also with the
dimensions of molecules/time). An adequate description of
proteostasis requires that we can measure at least two of
these parameters, from which the third can be calculated.
Because protein turnover can occur in the absence of any
change in pool size, it is evident that turnover parameters
must be measured by the flux of a tracer through the protein
pool. Most commonly, this is achieved in cells in culture with
radiolabeled (e.g., [35S]methionine) or stable isotope–labeled
(e.g., [13C6]lysine) protein precursors (“dynamic stable
isotope labeling by amino acids [AAs]” (1, 2)). The ability to
exchange culture media quickly in vitro means that precursor
pools can be rapidly manipulated and thus, a transition from
labeled to unlabeled media, or vice versa, can be made very
rapid, relative to protein turnover rates, which minimizes the
effects of precursor pool equilibration (3).
It is now clear that when compared with cells in culture,

protein turnover in animal tissues occurs in completely
different temporal regimes, with turnover rates spanning or-
ders of magnitude. Moreover, different tissues have distinct
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Protein Turnover Rate Analysis in Adult Animals
average turnover rates (e.g., liver has a higher turnover rate
than skeletal muscle (4–6)), and larger animals have much
lower average rates of protein turnover (6). This is in part
because of the different energetics constraints between free-
living animals and cultured cells. The latter grow exponen-
tially in excess nutrients and through cell division can also
remove “old” proteins via passive dilution, reducing the need
for energetically costly proteostatic degradation. This casts
doubt on the applicability of cell culture study to under-
standing turnover in organismal physiology, growth, and ag-
ing, and strongly calls for direct measurements of turnover in
animal systems.
Unlike cells in culture, in animal systems, the rapid ex-

change of precursor pools is not always feasible or practical.
Isotopically labeled precursors can be administered enterally
or parenterally, but in both circumstances, there is a delay in
equilibration of the labeled precursor with the tissue pools,
such that in the early phases of labeling, high turnover proteins
are sampling a precursor pool that has yet to reach equilib-
rium. Early studies used radiolabeled AA precursors, and
although scintillation counting permitted the measurement of
very low levels of radiolabel incorporation, this approach was
only suitable for total protein pools or measuring purified
proteins (7, 8). The need to understand proteostasis on a
proteome-wide scale has increased the need to measure
protein turnover for multiple proteins in the same system and
requires the deployment of stable isotopes. Stable isotope
labeling, in combination with proteomics, can yield turnover
rates for individual members of the proteome. An additional
complication in animal tissues is that turnover rates can be
low, and it is difficult to measure very low levels of stable
isotope in proteomics-focused mass spectrometry (MS).
Thus, labeling duration must be sufficient to lead to discern-
ible incorporation of the label. Stable isotope administration is
largely oral, through diet or drinking water and inevitably, this
route of administration introduces a delay in equilibration of
the precursor with whole-body metabolic pools. This delay
can introduce systematic underestimates of rates of turnover,
simply illustrated (Fig. 1C) by modeling of a two-compartment
model (9).
For animal studies, two approaches are most used, both

based on exposure of subjects to stable isotope precursors
followed by measurement of the rate of isotope incorporation
into individual proteins. First, a labeled essential AA can be
provided in the diet, either with a relative isotope abundance
(RIA) of 1, which requires a fully synthetic diet (10–12), or at a
lower RIA by supplementation of a standard laboratory diet
with pure labeled AA (4, 5, 13, 14). Typically, the labeled AA
incorporates multiple heavy atom centers, such that labeled
peptides yield m/z values that are well resolved from the
natural isotope distribution of the unlabeled AA (Fig. 1B, left).
Alternatively, animals can be provided with metabolically
simple precursors, such as [2H]2O or [15N]H4Cl, that deliver a
single labeled atom center to some or all AAs (15–18). In this
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instance, the labeling trajectory leads to a gradual shift of the
isotopic profile with considerable overlap between the unla-
beled isotopomer profile and the labeled profile (Fig. 1B, right).
Thus, the incorporation of labels into proteins (and there-

fore, into peptides derived from those proteins; an essential
element in the proteomics workflow) is very different with the
two labeling protocols. For AA labeling (“AA”) strategies, the
incorporation of one or more instances of the labeled AA
creates “heavy” peptides that are offset by the number of
heavy atom centers in the AA (such as [13C6]lysine or [2H7]
valine (5)). By contrast, for example, the deuterium atoms in
heavy water (“HW”) labeling strategies are incorporated stably
into specific AAs, leading to complex labeling patterns
wherein labeled peptides have mass shifts from 1 to many
daltons higher (17–22) (Fig. 1B).
A second difference between the AA and HW strategies

pertains to the equilibration of the label with the AA pool that is
the immediate precursor of protein synthesis. Dietary AAs
need to cross the intestinal mucosal barrier, pass through the
hepatic system, and are eventually transported to peripheral
tissues through the blood (Fig. 1C). By contrast, water crosses
all membranes and is rapidly equilibrated across all tissues
(18). If equilibration of the label with the precursor is consid-
erably faster than the rate of turnover of the protein pool, then it
can be assumed that the precursor enrichment is constant
over the labeling period. Under this circumstance, a simple
monoexponential function will define the transition from unla-
beled to labeled protein. In this regard, HW labeling should
equilibrate rapidly, which can be aided by an initial bolus in-
jection of pure [2H]2O. However, if the precursor pool equili-
brates at rates similar to the fastest turnover proteins, then a
more complex model is appropriate (5). It follows that the AA
strategy could be compromised by a delay in pool equilibra-
tion, and this would be particularly evident in proteins that were
substantially synthesized during the equilibration phase, spe-
cifically, high turnover proteins. Because of this unavoidable
lag, there have been a number of different solutions to address
slow precursor equilibration with AAs (9, 11, 12, 23, 24).
To explore the differences between the AA and HW stra-

tegies and to attempt to harmonize the two approaches, we
compared the turnover profiles of multiple proteins, derived
from four tissues, in mice that were otherwise identical in
genotype, source, age, sex, and husbandry (Fig. 1D). This
study allowed us to compare the two labeling approaches with
a precision not previously realized. Here, we present the
outcomes of these experiments and show that whilst each
approach yields quantitatively comparable results for slow
turnover proteins, they are increasingly discrepant for high
turnover proteins in a simple exponential kinetics model. In
particular, a HW methodology seems to consistently yield
turnover rate constants that are higher than those obtained by
an AA strategy. When two-compartment models are used to
correct for the delay in equilibration of the labeled precursor(s),
the rate constants converge more closely.



FIG. 1. Comparison of labeling strategies for turnover studies in intact adult animals. A, the effect on protein labeling of a delay in
precursor equilibration. The curves model the effect of a delay in precursor equilibration on labeling of protein pools, for three proteins with
degradation rate constants of 0.01 d–1, 0.1 d–1, and 1 d–1 (half lives of 69, 6.9, and 0.69, respectively). Four precursor equilibration rates are
modeled, with the blue and magenta lines representing such a high rate (600 d–1 and 6 d–1) as to be equivalent to near-instantaneous equili-
bration through the body, giving no perceptible delay. In amino acid (AA) labeling experiments, a kp of 0.1 to 0.5 may represent a realistic range
dependent on labeling routes and tissues examined (see the main text). As the delay becomes more prolonged (orange and yellow lines), the
protein labeling becomes commensurately slower, leading to an underestimate of the true degradation rate constant across proteins with
different kdeg values (kdeg of 0.01, 0.1, and 1 d−1 shown). B, mass spectrum features in AA labeling (left), which creates new peptide isotope
clusters and elemental heavy water (HW) labeling (right), which shifts the endogenous isotopomer rightward in the mass spectrum. C, schematic
of precursor introduction and pool enrichment showing the availability of intracellular precursors for protein synthesis. D, experimental design.
Groups of mice, identical in strain (C57BL/6J), age, sex (male), supplier, and husbandry were each labeled with either [13C6]lysine or [2H2]O for up
to 31 days, sampling tissues throughout the labeling period. Subsequently, tissues were recovered, and tryptic digests were prepared from
tissue homogenates to gain protein identity and to assess the degree of isotopic incorporation into proteins.

Protein Turnover Rate Analysis in Adult Animals
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

We performed a controlled laboratory study comparing the
analytical workflows of HW and AA labeling strategies. Both
labeling studies were conducted with laboratory mice derived
from the same supplier and maintained under identical condi-
tions. The experiments are designed to enable comparison of
sampling depth, data variance, and statistics as described in the
Results section.
Mol Cell Proteomics (2022) 21(7) 100252 3



Protein Turnover Rate Analysis in Adult Animals
Animal Husbandry

Fully grown adult male C57BL/6JOlaHsd mice (obtained from
Harlan UK Ltd, at 6–13 weeks of age) were previously group housed
and used in noninvasive behavioral studies. At the start of this
experiment, males aged 15 to 16 months old were housed individually
in 48 × 15 × 15 cm polypropylene cages (NKP Cages Ltd). Each cage
contained substrate (Corn Cob Absorb 10/14; IPS Ltd), paper wool
nest material, and environmental enrichment (hanging baskets and
plastic tubes). Food (LabDiet 5002 Certified Rodent Diet; Purina Mills)
and water were provided ad libitum. The mice were maintained on a
reversed photoperiod (light 12 h; dark 12 h; lights on at 20:00 h) and at
19 to 21 ◦C. Animal use and care was in accordance with European
Union directive 2010/63/European Union and UK Home Office code of
practice for the housing and care of animals bred, supplied, and used
for scientific purposes. HW labeling was carried out under UK Home
Office license under the Animals in Scientific Procedures Act 1986
(PPL 40/3492). The University of Liverpool Animal Welfare Committee
approved the work.

Labeling With [13C6]lysine

This study used 11 mice. Standard laboratory diet (LabDiet 5002)
was supplemented with pure crystalline [13C6]lysine (Cambridge
Isotope Laboratories) to bring the RIA to 0.5. The dietary pellets were
dissociated with water containing the dissolved [13C6]lysine to form a
thick paste and mixed extensively. Once homogeneous, the paste was
then extruded into strips 1 cm across and dried in a commercial
foodstuff drying oven at 40 ◦C. The mice had access to the labeled
diet for varying amounts of time with randomized assignment: 0, 1, 2,
3, 4, 6, 9, 12, 17, 22, or 30 days. The day that the animals were
introduced to the labeled diet was staggered for all endpoints so that
dissections took place on the same day. All mice were humanely killed
on day 30, and the animals were dissected to recover liver, kidney,
heart, and pooled hindlimb skeletal muscle from each animal. All tis-
sues, and the carcasses, were frozen at –80 ◦C prior to analysis.

Labeling With [2H2]O

For the HW labeling protocol, all animals (13) were provided free
access to LabDiet 5002. At the start of the experiment, mice were
injected with two successive 0.5 ml injections, 4 h apart, of 0.15 M
sodium chloride dissolved in deuterated water. Thereafter, mice were
given free access to 8% (v/v) [2H2]O for the duration of the experiment.
After 0, 1, 2, 3, 6, 7, 9, 13, 16, 21, 24, and 31 days, mice were killed
and dissected exactly as described for the [13C6]lysine labeling
experiment, and tissues were stored at –80 ◦C prior to analysis. In
addition, plasma samples were obtained by postmortem cardiac
puncture.

Preparation of Samples for Proteomics

Small portions (typically 50–100 mg wet weight) from the frozen
organs from both studies were further cut into small pieces to facilitate
homogenization in 1 ml of lysis buffer (7 M urea, 2 M thiourea, 2% [w/
v] CHAPS, and 5 mM DTT) using a Precellys lysis kit (Stretton Sci-
entific Ltd). Total protein extracted was quantified using a Bradford
assay. Protein (200 μg, AA; 100 μg, HW) was reduced, alkylated, and
digested with trypsin using a modified version of the filter-aided
sample preparation approach (25). The labeling protocols were
designed so that all labeling time points for a single tissue (11 sam-
ples, AA; 12 samples, HW) were prepared and analyzed concurrently.

Nontargeted MS1–data-dependent acquisition analyses were con-
ducted on a Q-Exactive HF quadrupole-Orbitrap mass spectrometer
coupled to a Dionex Ultimate 3000 RSLC nano-liquid chromatograph
(Hemel Hempstead). One microgram of peptides from each time point
were loaded onto a trapping column (Acclaim PepMap 100 C18,
4 Mol Cell Proteomics (2022) 21(7) 100252
75 μm × 2 cm, 3 μm packing material, 100 Å) using a loading buffer of
0.1% (v/v) TFA, 2% (v/v) acetonitrile in water for 7 min at a flow rate of
12 μl min−1. The trapping column was in-line to an analytical column
(EASY-Spray PepMap RSLC C18, 75 μm × 50 cm, 2 μm packing
material, 100 Å) and peptides eluted using a linear gradient of 96.2% A
(0.1% [v/v] formic acid): 3.8% B (0.1% [v/v] formic acid in water:-
acetonitrile [80:20] [v/v]) to 50% A:50% B over 90 min at a flow rate of
300 nl min–1, followed by washing at 1% A:99% B for 8 min and then
re-equilibration of the column to starting conditions. The column was
maintained at 40 ◦C, and the eluent was introduced directly into the
integrated nano-electrospray ionization source operating in positive
ion mode. The mass spectrometer was operated in data-dependent
acquisition mode with survey scans between m/z 350 and 2000 ac-
quired at a mass resolution of 60,000 (full width at half maximum) at
m/z 200. The maximum injection time was 100 ms, and the automatic
gain control was set to 3e6. The 16 most intense precursor ions with
charge states of 2+ to 5+ were selected for MS/MS with an isolation
window of 1.2 m/z units. The maximum injection time was 45 ms, and
the automatic gain control was set to 1e5. Fragmentation of the
peptides was by higher-energy collisional dissociation using a step-
ped normalized collision energy of 28 to 30%. Dynamic exclusion of
m/z values to prevent repeated fragmentation of the same peptide was
used with an exclusion time of 20 s.

Experimental Measurement of Precursor Enrichment

Plasma samples (50 μl) were treated with 2 μl of 10 M sodium hy-
droxide (BDH) and 1 μl of acetone (Fisher). After mixing, the samples
were left overnight at 20 oC to allow the exchange of deuterium from
water to acetone to occur. To produce a calibration curve, 50 μl
mixtures of between 0 and 10% (v/v) deuterium oxide (Cambridge
Isotope Laboratories) in HPLC grade water (VWR International) were
also treated and extracted. The acetone was then extracted from the
samples using 200 μl of chloroform (VWR) for 15 s. Aliquots of the
extracts were then analyzed by GC–MS on a Waters GCT Premier gas
chromatograph-mass spectrometer (Waters). The chromatography
column employed was a 30 m long, 0.25 mm internal diameter,
0.25 μm film thickness DB-17MS (Agilent J&W). The carrier gas was
helium (BOC) at 1 ml min−1. The injector was operated in the splitless
mode at 220 oC, and the injection volume was 1 μl. The oven tem-
perature program was 60 oC to 100 oC at 20 oC min−1 with a 1 min
hold, then from 100 oC to 220 oC at 50 oC min−1. The mass spec-
trometer was operated in the positive ion electron ionization mode
with source temperature 200 oC, electron energy 70 eV, and trap
current 200 μA. Mass spectra were recorded in low sensitivity mode
between 40 and 100 m/z with a scan time of 0.1 s. The spectral in-
tensities of ions at m/z 58 and m/z 59 were measured using the
MassLynx software (Waters Corporation) supplied with the instrument.
Comparison of the ratio of m/z 59 to m/z 58 for the biological samples
against the curve generated from the calibration samples allowed the
enrichment of deuterium oxide (HW) to be measured.

Direct Analysis of Tissue Lysine Pools

Tissue homogenates (100 μl) were added to 350 μl methanol
(LC–MS grade), cooled to –80 ◦C, and maintained on dry ice during the
addition. The mixture was vortexed vigorously and centrifuged at
13,300 rpm for 15 min at 4 ◦C to sediment proteins. Aliquots were
subsequently dried in a vacuum centrifuge and stored at –80 ◦C until
LC–MS/MS analysis. Prior to analysis, samples were resuspended in
52 μl water (LC–MS grade), centrifuged at 13,300 rpm for 15 min at
4 ◦C to remove any particulates, and transferred to glass sample vials.
Untargeted HPLC–MS/MS data acquisition was performed as pub-
lished (26–28). Full-scan MS and data-dependent MS/MS data were
acquired using a Thermo Fisher Scientific Vanquish HPLC system
coupled to a Thermo Fisher Scientific Q-Exactive mass spectrometer
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operating in positive ionization mode as described (29). Raw instru-
ment data (.raw files) were exported to Compound Discoverer 3.1
(Thermo Fisher Scientific) for deconvolution, alignment, and annota-
tion, as described (29). The peak areas of [12C6]lysine and [13C6]lysine
were retrieved and used to calculate the RIA.

Postprocessing of Protein Labeling Data

A summary of the workflow for data processing is given in
Figure 2A. Thermo.raw mass spectrum files were converted to the
mzML format using ThermoRawFileParser, version 1.2.0 (30). The
centroid MS2 spectra were searched against the UniProt (31) Mus
FIG. 2. Data analysis workflows. A, schematic for the data analysis w
EFGIADPEEIMWFK 2+ of peroxisomal acyl-CoA oxidase (Q9R0H0) for A
tensity values for the major isotope of light (m0) and heavy (m6) versio
retention time window (±30 s); for HW labeling, the intensities for each s
measured. C, the intensity over time values within the retention time wind
for AA and HW labeling here. D, the data from each labeling time point ar
relative isotope abundance value for each peptide at each time point, w
defined as m0/(m0 + m1 + m2 + m3 + m4 + m5). The data time series is th
method to optimize for the protein turnover rate constant k that results
fitted to a two-compartment model to adjust for slow label enrichment in
than the exponential model and leads to a higher estimated kdeg but
equilibration. The asymptote of m0/Σmi in the HW experiment is a functio
and the precursor RIA and is greater than 0 because some hydrogen atom
HW, heavy water; MS, mass spectrometry; RIA, relative isotope abunda
musculus reviewed database (retrieved April 27, 2021) using Comet,
v.2020_01rev3 (32) with contaminant proteins and decoys appended
using Philosopher, v.3.4.13 (33). Search settings include 20 ppm
peptide mass tolerance, 0.02 fragment bin tolerance, 0/1/2/3 isotope
error, trypsin specificity with 1 enzyme terminus (semitryptic) and two
allowed missed cleavages, and +15.9949 methionine variable modi-
fications. In addition, AA labeling experiments allowed +6.0201 lysine
variable modifications. The Comet search results were postprocessed
and filtered using Percolator, v.3.0.5 (34) standalone distribution with
the -Y, -i 20, and -P DECOY_ arguments. Peptides identified at the 1%
false discovery rate (Percolator q value) threshold were used for
downstream analysis.
orkflow for HW and AA labeling data. B, the MS1 spectrum for peptide
A labeling (left) and HW labeling (right) data. For AA labeling, the in-
ns of a peptide are measured for each MS1 scan within a specified
uccessive isotopomer within the isotopomer envelope (m0 to m5) are
ows are then integrated as shown in the extracted ion chromatograms
e processed in the manner described previously, resulting in a peptide
hich for AA labeling is defined as m6/(m0 + m6) and for HW labeling
en fitted to a simple exponential kinetics model using a quasi-Newton
in the least square error value. E, same as D, but the time-series data
the animal body. The two-compartment model fits the AA data better
has a less pronounced effect on HW labeling because of fast label
n of the number of accessible labeling sites on the peptide sequence
s cannot be labeled and precursor RIA is less than 1. AA, amino acid;

nce.
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Peak Integration

To integrate the HW and AA labeling data, we wrote an in-house
Python program, Riana, v.0.6.4. Riana was written in Python (version
3.6 and greater) and accepts as input the path to the tab-delimited
files generated from Percolator for each organ, labeling method, and
experimental time point; and the path to the corresponding directory
containing the mzML files to be integrated (Fig. 2A). For each quali-
fying peptide spectrum match, Riana reads the scan number, identi-
fied sequence, and charge from the database search result. It then
strips any heavy modifications to calculate the theoretical m/z of the
unlabeled peptide (m0 peak) and also calculates the theoretical m/z of
subsequent labeled mi peaks regardless of whether the heavy labeled
peptide was explicitly selected for fragmentation and confidently
identified. Riana uses the pymzml package, version 2.0.0 (35) to open
mzML files and gathers the intensity values of the centroided peaks of
all MS1 spectra for each isotopomer for each qualifying peptide within
a retention time range and 25 ppm mass precision (Fig. 2B). It then
integrates and returns the areas under curve of the isotopomer
chromatograms using the trapezoid method in SciPy, version 1.6.3
(36). Additional arguments in Riana specify the nth isotopomer to be
integrated (–iso), which was set to 0, 1, 2, 3, 4, 5, 6, 12 for both HW
and AA data; the retention time window to integrate across (–rt), which
was set to 0.5 min (Fig. 2C).

Kinetic Models

The collated (RIA, t) series for each peptide charge combination for
each fraction in each time point in each organ in each labeling method
are then used for kinetic curve fitting with either a simple exponential
(Fig. 2D) or a two-compartment (Fig. 2E) model. Kinetic curve fitting
was performed using a custom R script written in R (version 4.1.1)
running on platform x86_64-apple-darwin17.0 (64 bit). Optimization for
the protein turnover rate constant kdeg was performed using the
optim() function in the stats package of base R using the Broyden–
Fletcher–Goldfarb–Shanno quasi-Newton method and a starting value
of kdeg = 0.29. Fitting for the rate constant for precursors to reach
plateau (kp) using the single exponential or Fornasiero double expo-
nential model was optionally also performed using the nls() function
with the default Gauss–Newton algorithm to retrieve the log likelihood
and calculate the Akaike Information Criterion (prediction error, thus
allowing model selection). Time series (t, At) data were fitted to two
models (one-compartment simple exponential versus two-
compartment) to find the best estimate of protein turnover rate (kdeg)
that minimizes sums of squares of error. The one-compartment
exponential model used is given by:

At =At=0 + (At→∞ −At=0) ∗ (1− e−kt)
Where At is the estimated time-dependent relative isotopomer
abundance (RIA) of interest for a peptide under a label enrichment
level of p, at a measured time point t, which for HW labeling data
is defined as:

At =mi=0/∑5
i=0

mi

where mi is the chromatographic area under curve of the ith iso-
topomer of the peptide integrated by Riana. A0 is the initial prel-
abeling RIA, which for HW is the isotope abundance based on
natural isotope distribution calculated from Berglund and Wieser
(37) and At→∞ is the asymptotic relative abundance, which for HW
was defined by the number of accessible labeling sites at each AA
based on tritiated water data in the study by Commerford et al.
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(38), the sequence of the peptide, and the deuterium enrichment
level as previously described (15, 17). For AA labeling, At is
defined as m6/(m0 +m6) and A0 is 0% before enrichment, which
At→∞ depends on the RIA of heavy AA in the feed using direct
LC–MS measurement or by mass isotopomer distribution analysis
as previously described (5). The fitting error of the one-
compartment exponential model is given by:

dk= k ∗ e
(At→∞− At=0) ∗ σA

Where σA is the residual error of RIA after fitting.
The two-compartment model used is given by:

At = At=0 + (At→∞ −At=0) ∗ 1−(e−ktkp− e−kptk)
kp−k

Where kp is the first-order label accumulation rate constant. The
fitting error of the two-compartment model is given by:

dk= σA ∗ (kp−k)2
(At→∞−At=0) ∗ (t ∗ (k−kp)−1) ∗ e(−t∗ k) + e(−t∗ kp) ∗ kp

The two-compartment three-exponent model for peptides and
precursor kinetics is as described in the study by Fornasiero et al. (11).
For precursor fitting, the model was scaled to 50% heavy lysine.

Additional Data Analysis

Data analysis and visualizations were performed in R (version 4.1.1)
unless otherwise specified. Robust correlation is performed using
biweight midcorrelation implemented in the WGCNA (39) package
(version 1.70-3). Data visualizations were generated with the aid of the
ggplot2 (40), gganatogram (41), ggpubr (42), and plotly (43) packages
in R. Kernel density estimations were performed using gaussian_kde
in SciPy (version 1.6.3) (36) in Python 3.8. Peptide isotopomer inte-
gration output and R code for kinetic curve fitting have been uploaded
to a runnable container at CodeOcean (https://codeocean.com/
capsule/3856272/tree/v1).
RESULTS

For both labeling protocols (AA versus HW), peptides fol-
lowed the expected trajectory of gradual incorporation of la-
bels into peptides. For the AA protocol, the expected increase
in intensity of [13C6]lysine terminated peptides led to clear
separation between the unlabeled and labeled components of
the peptide pool for all discernible isotopomers (m0, m0 + 6;
m1, m1 + 6, etc). There was no evidence for partial loss of
single labeled atom centers from the AA; the isotopomer
profiles for labeled or unlabeled peptides are identical. For the
HW strategy, the mass shift for the peptide was more subtle,
evidenced as a gradual shift from the monoisotopic m0 pool
and increased intensity of the m1, m2… mn isotopomer in-
tensities, reflecting gradual incorporation of deuterium into the
peptides (Fig. 1A).
AA-labeled peptides conform to the kinetic model only

when the peptide contains one lysine; for fair comparison, we
initially filtered peptides in the HW experiment identically. With
this filter, the HW and AA labeling experiments yielded similar

https://codeocean.com/capsule/3856272/tree/v1
https://codeocean.com/capsule/3856272/tree/v1
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numbers of quantifiable peptides over the entire labeling curve
(Fig. 3, A and B). As we have observed previously (4), liver and
kidney give the highest number of peptides, with heart inter-
mediate and the lowest, skeletal muscle, providing about half
as many peptides. We attribute this to the more pronounced
dynamic range in protein expression in the two muscle tis-
sues, such that the column loading and analysis are domi-
nated by those proteins that are strongly expressed. There is a
modest decline in the number of quantifiable peptides over the
labeling trajectory, and this decline is slightly more pro-
nounced with HW than AA labeling. Nevertheless, the results
suggest that the analytical approach was able to capture
isotopically labeled peptides to comparable depths in each
method, regardless of the extent of labeling within the limits
here. We note that HW labeling is compatible in theory with
any peptide sequence, whereas AA labeling is restricted to
those peptides containing that residue. When all peptides,
including miscleaved peptides are admitted, regardless of the
number of lysine residues in the sequence, HW labeling
quantifies approximately twice the number of peptides
(supplemental Fig. S1).
Both labeling protocols were extended over 30 (AA) or 31 d

(HW), with the first practical sampling point being at 1 d. This
labeling window imposes limits on the range of degradation
FIG. 3. Overall depths of the comparative analysis. A, for each tissue
with Riana with quantified isotope ratios at each experimental time po
peptides lysine for turnover calculation, only peptide sequences with a s
tissue, the cumulative number of peptides (solid line) and proteins (da
quantified in the heavy water (HW) labeling (green) and AA labeling (blue)
of peptides or proteins quantified in at least six time points in a labeling
rate constants (kdeg) that can be recovered, further
confounded by the differences in rates of precursor equili-
bration (kp). A protein that is extensively labeled (>80%) at 1 d
would have a kdeg of at least 2 d–1 (half life less than 8 h). At
this rate of labeling, there is no opportunity for multiple time
points to define the labeling curve, and the errors in kdeg
determination would be high. At the other extreme, a protein
that was no more than 10% labeled at 30 d would have a kdeg
of 0.003 d–1 or less (a half life of over 200 days), and once
again, all the time points would have high errors, because of
the low degree of incorporation. This is an inevitable conse-
quence of stable isotope analysis by proteomic-compatible
MS and imposes analytical restrictions on the range of rate
constants that can be determined.

Analysis of Raw Isotopomer Intensity Data by Nonlinear
Curve Fitting

To compare HW and AA labeling, we first used a conven-
tional one-compartment simple exponential model that is
widely used in cell culture experiments in vitro, excluding any
slow rise in labeling kinetics. The asymptotic values of the
labeled RIA for each method are reflected in the labeling
plateau of peptides, which is set to 0.45 for AA labels and
0.046 for HW labels for this analysis (see later). To minimize
, each bar defines the number of unique peptides that were integrated
int in the labeling period. Because amino acid (AA) labeling requires
ingle lysine residue are included here for fair comparison. B, for each
shed lines) quantified at increasing numbers of minimal time points
datasets. For instance, at x = 6, the y-axis numbers denote the number
method and tissue.
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uncertainty of isotopomer quantification, we used a conser-
vative filter to admit only peptides quantified at nine time
points and/or greater and that fitted to the one-compartment
model with R2 of ≥0.9 unless specified. For the one-
compartment model, the best-fit peptide kdeg values from
HW and AA labeling are concordant (biweight midcorrelation
≥~0.75). However, AA labeling generally reported lower pep-
tide turnover rates compared with HW, especially apparent for
peptides from proteins with relatively high turnover within a
tissue (supplemental Fig. S2).
As stated earlier, a major difference between labeling with

water and a free AA in the diet is the rate at which the pre-
cursor pool equilibrates. The AA data within a tissue, partic-
ularly for relatively high turnover peptides, when compared
with HW labeling, suggest that AA data require a kinetic model
that acknowledges this delay in equilibration in preference to a
simple one-compartment model that assumes near instanta-
neous equilibration of label precursor pool. We therefore
investigated the application of a two-compartment model to fit
the HW and AA data. In the two-compartment model
described by Guan et al. (23), peptide isotope enrichment is
described using two rate constants: the protein turnover rate
kdeg and a composite rate constant that encompasses pre-
cursor availability kinetics; kp. This model therefore requires
knowledge of the value of kp in each tissue.
A clear indication of the behaviors of the HW and AA pre-

cursors can be gleaned from the labeling trajectories of the
major urinary proteins (MUPs). MUPs are synthesized in large
quantities in the liver and are immediately secreted and
exported into the circulation, efficiently filtered by the
glomerulus and excreted into urine, where they play multiple
semiochemical roles (44–46). Because of the speed of this
secretion and the lack of any intermediate protein pool (MUPs
are very difficult to detect in plasma), the isotopomer signa-
tures of MUPs in the liver at any time point should reflect new
synthesis and rapid secretion and thus act as efficient and
high-speed sensors of the precursor enrichment (47). We
fitted the MUP peptide data to an exponential model with
isotope relative abundance of each peptide represented in the
same scale as fractional synthesis (i.e., total fraction of protein
pool with the isotope tracer signature). For HW-labeled MUPs,
the proteins acquire label extremely rapidly, with an average
rate constant (kp) of at least 2 d–1—the rapidity of labeling
precludes accurate measurement of the true rate constant,
but in the context of this system, it can be considered to be
near instantaneous. By contrast, for AA-labeled MUPs, the
rise to plateau was notably slower, yielding a kp of approxi-
mately 0.5 d–1 (half time of about 1.4 d). If we take the AA-
derived value to most closely reflect precursor behavior
(because of the lack of an intracellular pool), then we can
compare the AA kp rate constant with those obtained by the
other approaches. Unfortunately, in the absence of true
secreted proteins from other tissues that do not mix into a pre-
existing pool, this insight is restricted to the liver (Fig. 4).
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At the same time, because we collected both HW and AA
labeling data, our experimental design allowed us to search for
suitable kp values that would bring the AA labeling data into
concordance with the HW labeling data (Fig. 5A). If we assume
the HW labeling data to be more accurate for our purpose,
because of the rapid precursor equilibration of water, this
would suggest that a “corrected” kp for AA labeling is 0.28 to
0.38 d–1 for heart and skeletal muscle and 0.43 to 0.60 d–1 for
liver and the kidney, values substantially higher than those
acquired experimentally using LC–MS measurements of free
lysine residues in this study (see the later paragraph). With
these values of kp, the proteome-wide slope of log kdeg across
shared peptides in HW and AA labeling approaches unity
(Fig. 5B). Therefore, although a two-compartment model is
sufficient to describe the behavior of AA labeling data with
precursor delay, it is not clear a priori how to produce the
requisite kp values to accurately describe tissue-specific pre-
cursor kinetics. Because the HW labeling–derived kp values
require the external reference of HW data, they are unsuitable
for experiments where only AA labeling is performed. We
therefore explored additional approaches that could provide a
self-sufficient estimate of the precursor kinetics parameters
for two-compartment modeling of AA labeling. There are at
least three methodological approaches by which this may be
achieved, including (1) direct empirical measurements of label
in the subject; (2) a data-driven iterative approach to find the
kp that best explains all peptide data in a two-compartment
model fitting; and (3) calculation of RIA using mass iso-
topomer distribution analysis from peptides containing two
labeling sites (i.e., dilysine peptides).
We first experimentally measured the precursor enrichment

using GC–MS and LC–MS method. For HW labeling, we
measured whole-body water RIA enrichment using GC–MS by
sampling plasma water (supplemental Fig. S3A). As water
equilibrates rapidly across body compartments (18), it is
assumed that the precursor kinetics for HW would be similar
across tissues. The same assumption, however, cannot be
made for AA labeling. We therefore measured label enrich-
ment of free lysine from each tissue using LC–MS to assess
AA labeling precursor enrichment (supplemental Fig. S3B).
The GC–MS and LC–MS data allowed estimation of the
plateau precursor RIA (RIAp) values of 0.45 for AA labels and
0.046 for HW labels (supplemental Fig. S3, A and B). The LC–
MS data determined that lysine RIA enrichment curves in the
four tissues vary between tissues, and we find slower pre-
cursor kinetics in the heart and the skeletal muscle, tissues
that have lower metabolic turnover. The precursor RIA did not
reach a true plateau until after 30 days. Remarkably, this is
incompatible with the peptide RIA data, as the precursor
enrichment cannot be slower than the peptide turnover curve.
This discrepancy may be due to lysine metabolism compli-
cations or the inability to access the true protein synthesis
precursor pool of lysine within the tissues. In fact, the LC-
derived AA kp values limit the rise of peptide RIA in the two-



FIG. 4. Isotopic labeling of major urinary proteins (MUPs) in the liver. Single exponential kinetic curves for MUP peptides commonly
quantified at ≥10 time points in both the (A) AA and (B) HW datasets. To compare HW and AA data in the same scale and because each peptide
in HW labeling has different initial and plateau m0/mi values, the peptide isotope relative abundance data are normalized to 0 (before labeling)
and 1 (plateau) as fractional synthesis. Peptides fitted at R2 ≥ 0.6 at the peptide level were combined in the fractional synthesis space then fitted
to a single kinetic curve to estimate the overall MUP ksyn. Because MUPs are secreted from the liver as soon as they are synthesized, the
quantified label trajectory is assumed to be limited only by precursor availability. As expected, in AA labeling, the MUPs reflect delayed precursor
kinetics with kp of ~0.49; whereas precursor kinetics is rapid in HW labeling with kp >> 1. x-axis: time (days); y-axis: fractional synthesis. Main
panels show expanded views from day 1 to day 10 of labeling, insets show the full data range. Asterisks after protein names denote peptide
sequences present in multiple MUPs. Red lines denote models of best-fit first-order rate constant ± fitting error. The curve plotted for HW
labeling cannot be construed as an accurate fit but reflects the rapidity of HW incorporation. AA, amino acid; HW, heavy water.
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pool model with the consequence that the model cannot
converge and does not explain the observed peptide RIA time
series (supplemental Fig. S3C). We conclude that the LC-
measured AA RIA as implemented underestimates true pre-
cursor enrichment rates and is unsuitable for explaining the
peptide RIA curves and correcting for precursor delay.
We next assessed whether kp could be gained directly from

the peptide RIA data using a proteome-wide optimization
approach, that is, locate a kp value that gives the lowest sums of
squares (fitting error) in all peptides from kinetic curve fitting to
the two-compartment model. At very high kp, the
two-compartment model approaches the one-compartment
model, whereas an underestimated kp will prevent the theoret-
ically allowable peptide (t, RIA) values from ever reaching their
actual experimental measurements within the experimental
time frame. Hence, the goal is to find the lowest kp that explains
the data points better in a two-compartment model compared
with the one-compartment model, using the median fitting
sums of squares of all qualifying peptides as the target. We had
limited successwith this nested optimization approach, and the
results suggested that the strategy for finding best-fit precursor
kinetics parameters will be tissue specific. In the two low-
turnover/slow-equilibration tissues (heart and skeletal mus-
cle), the two-compartment model outperformed the
one-compartment model at a kp of ~0.25 to 0.35 d–1, thus this
model can be used to find precursor kp in slow-equilibrium tis-
sues. On the other hand, the two-compartment model never
fitted the data better than the one-compartment model in the
liver or the kidney (supplemental Fig. S4, A and B). Conversely,
proteome-wide optimization over the fast-equilibration tissues
allowed the effective plateau RIAp in these tissues to be esti-
mated directly from the data, which was not possible in the
slow-equilibration tissues (heart and skeletal muscle). We
interpret the results to suggest that although a two-
compartment model is necessary to correct for labeling delay,
the precise values of kp cannot be easily found in fast equili-
bration tissues as different combinations of kp and kdeg yield
identical kinetic curves.Conversely, in some tissues, thebest-fit
kp learned from the data will not necessarily give accurate ab-
solute values of peptide kdeg.
Finally, we estimated precursor RIA over time using mass

isotopomer analysis with dilysine peptides. This is a
commonly used method in dynamic stable isotope labeling by
AA studies in animals, where the heavy–heavy and heavy–light
peaks of a peptide containing two labeled AAs is used to
reveal the true precursor RIA during the time when the pep-
tides were made (5). However, there is no commonly accepted
standard for selection of the dilysine peptide(s) for this
Mol Cell Proteomics (2022) 21(7) 100252 9



FIG. 5. Calibrating AA labeling precursor kinetics using HW-derived rate constants. A, 2D density plot of the log median absolute
pairwise differences in peptide kdeg from HW versus AA labeling data, against different values of plateau RIAp (x-axis) and kp (y-axis). Red dots
show the kp values with minimal HW–AA differences at RIAp = 0.45, also shown in the blue numbers in the line plots below. Common peptides in
HW and AA labeling with one lysine are analyzed. B, 2D density plot of the absolute deviation from unity slope in proteome-wide kdeg from HW
versus AA labeling data, against different values of plateau RIAp (x-axis) and kp (y-axis). Red dots show that in the values with minimal HW–AA
differences (as in A), the slope of proteome-wide log HW versus AA kdeg values approach 1. Blue numbers in the line plots below show the kp
values where the slope between HW and AA kdeg is nearest to 1. AA, amino acid; HW, heavy water; RIAp, precursor RIA.
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calculation. We therefore calculated the precursor RIA,
restricted to all dilysine peptides quantified at a minimum of
nine time points in each tissue. Whilst there is a noticeable
increase in estimated precursor RIA as labeling proceeds
(supplemental Fig. S5A), the calculated precursor RIA values
from each peptide have high variance, especially at earlier
time points. Using a Gaussian kernel density estimate, we
estimated the mode RIA at each time point as the represen-
tative tissue precursor RIA (supplemental Fig. S5A). The
resulting tissue RIA estimates fitted well to single exponential
curves. However, the derived kp values remain lower than
required to explain the peptide curves in AA labeling or the
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MUP-derived prediction, and the curve fitting is unable to
converge to a satisfactory solution for a number of peptides.
As an alternative to kernel density estimates, we used all

qualifying tissue-wide RIAp values (dilysine peptides identi-
fied at ≥9 time points, 0 ≤ RIA ≤ 0.6) to define a single
exponential kinetics model using weighted nonlinear least
square fitting across each tissue to estimate the precursor
rate constant and plateau (supplemental Fig. S6). The
contribution of each RIA data point to the fitted curve is
weighted by the square of the peptide isotopomer normalized
intensity. This approach produces kp values that align well
with those derived from HW adjustment. For the liver, the



TABLE 1
Methods for determination of AA labeling precursor kinetics

Method Details/description Heart Kidney Liver Muscle

MUP secretion Estimation of label delay in rapidly secreted
proteins (MUPs) from the liver with no pre-
existing pools (using RIAp set to 0.45)

— — kp: 0.49 ± 0.18 —

Experimental Measurement of free tissue lysine pool using
LC–MS (using RIAp set to 0.45)

kp: 0.10 ± 0.04 kp: 0.12 ± 0.02 kp: 0.20 ± 0.04 kp: 0.06 ± 0.02

Global optimization
to two-
compartment
model

Using nested optimization, learn from the data
the kp values that minimize global fitting
errors in the two-compartment model
described in the study by Guan et al. (23)

kp: ~0.35 — — kp: ~0.25

KK peptides—one-
pass fitting

Calculate RIA from m6 and m12 peaks of
dilysine peptides at each time point, then fit
all qualifying data points to a single
exponential rise curve

kp: 0.37 kp: 0.58 kp: 0.52 kp: 0.31
RIAp: 0.37 RIAp: 0.38 RIAp: 0.42 RIAp: 0.35

KK peptides—one-
pass fitting to
two-exponent
precursor model

Calculate RIA from m6 and m12 peaks of
dilysine peptides at each time point, then fit
all qualifying data points to the double
exponent model described in the study by
Fornasiero et al. (11) that accounts for label
dilution from proteome-wide degradation

a: 0.12 a: 0.11 a: 0.15 a: 0.08
b: 0.84 b: 1.37 b: 1.05 b: 0.42
r: 9.08 r: 11.2 r: 5.52 r: 6.04

KK peptides—best
estimate RIAs

Calculate RIA from m6 and m12 peaks of
dilysine peptides, find the estimated tissue
RIA at each time point using kernel density
estimation, and then fit to a simple
exponential rise curve

kp: 0.19 kp: 0.37 kp: 0.30 kp: 0.16
RIAp: 0.39 RIAp: 0.43 RIAp: 0.42 RIAp: 0.36

KK peptides—
median kp

Calculate RIA from m6 and m12 peaks of
dilysine peptides, fit each peptide time series
to an exponential rise curve to derive, and
then take the median of all best-fit kp values

kp: 0.17 kp: 0.30 kp: 0.33 kp: 0.12

HW reference Using nested optimization to the two-
compartment model described in the study
by Guan et al. (23) for AA, find the kp that
minimizes total error between HW and AA
labeling results

kp: ~0.35 kp: 0.44–0.45 kp: 0.58–0.60 kp: 0.28–0.38

kp, precursor RIA kinetics rate constant; RIAp, asymptotic precursor RIA.
The parameters a, b, r in the three exponent Fornasiero model are independent parameters used to calculate peptide isotope incorporation

rate constants and relate to global protein degradation, soluble precursor pool exchange, and the ratio of protein bound and soluble precursors
as given in the study by Fornasiero et al. (11).
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MUP-derived kp was essentially the same as the dilysine
recovered parameter (0.49, cf. 0.52 d–1).
Because the RIA curve in the weighted fitting exhibited

biphasic behavior, we also fitted the tissue RIA curves to the
two-exponent kinetic model described by Fornasiero et al. (11),
which accounts for label dilution from global protein degrada-
tion, using three parameters, the soluble precursor enrichment/
breakdown rate constant, b, the global protein degradation rate
constant, a, and the ratio of lysine pool in soluble versus
protein-bound pools in a tissue, r (supplemental Fig. S6).
Reutilization, represented by a, contributes to the slow phase
precursor rise following the initial plateau as the reutilized lysine
residues originating from protein degradation products slowly
become labeled. The two-exponent kinetic model fitted to
dilysine peptides derived RIA values significantly better than
the single-exponent model, accounting for the extra number of
parameters (Akaike weights 1 to 9e–44 in the heart; 1 to 1e–27
in the kidney; 1 to 1e–27 in the liver; and 1 to 9e–18 in the
muscle). When incorporated into a two-compartment three-
exponent model (a, b, and kdeg) for individual protein kdeg
values, the method by Fornasiero et al. (11) yielded results
comparable to the two-compartment two-exponent model in
the study by Guan et al. (23) for slow-turnover peptides within a
tissue but was able to correct for fast-turnover proteins within a
tissue in the AA labeling experiments (supplemental Fig. 7, A
and B). Both two-compartment models led to higher intra-
protein variance (supplemental Fig. 7C) than the single expo-
nential model (see the later paragraphs) across various R2

cutoffs. The different methodologies and resultant values for
various precursor kinetics parameters are summarized in
Table 1.
From these analyses, and using the MUP-derived parame-

ters as ground truth, we conclude that correction for slow
equilibration (whether caused by slow uptake or reutilization)
Mol Cell Proteomics (2022) 21(7) 100252 11
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is feasible, and that analysis of dilysine peptides, two-pool
modeling, or reutilization correction give the best estimates.

Comparison of Peptide Turnover Rates Between HW and
AA Labeling

We next used the weighted dilysine peptide kp and
asymptotic RIAp values in a two-compartment two-exponent
model to derive peptide kdeg for all qualifying single lysine
peptides in each tissue. We were thus able to fit the AA (slow
equilibration) and HW data (rapid equilibration) using either
model for comparison. We compared the best-fit peptide kdeg
from the one-compartment model to a two-compartment
model that accounts for the delay in precursor equilibration.
As anticipated, the two-compartment model influenced the
kinetics of the AA labeling experiment more than HW labeling,
particularly for higher turnover proteins within a tissue. This is
evident from the off-diagonal distribution between one-
compartment and two-compartment models in AA labeling
as well as the absolute differences in high-turnover peptides
(Fig. 6A).
Fitting to the two-compartment model brought the median

turnover rates of peptides quantified from the two methods
into closer correspondence (Fig. 6B) and corrected the
discrepancy between HW and AA labeling in relatively high
turnover proteins within a tissue (Fig. 6C). For peptides inte-
grated over at least nine time points and fitted with an R2 of
≥0.9, the agreement between the methods is good (robust
correlation bicor: 0.758–0.862 in four tissues) when the two-
compartment model is used to fit the (peptide RIA, t) data.
Both AA and HW labeling data showed excellent agreement
with the turnover rates derived in a previous study of HW la-
beling of heart proteins in an independent cohort of C57BL/6J
mice (15) (biweight midcorrelation: 0.85–0.93; supplemental
Fig. S8A). In addition, we also observed good agreement
with a more recent study of AA labeling of liver and skeletal
muscle proteins in NSBGW mice by Rolfs et al. (24) (biweight
midcorrelation: 0.73–0.83; supplemental Fig. S8, B and C),
however, although the rank of peptide kdeg values appear
highly similar, a lower overall range of values was reported in
the study by Rolfs et al., which we hypothesize may be due to
differences in fitting strategies and RIA plateau rather than
intrinsic differences in the data. Given there are several ap-
proaches to data modeling and they do not fully agree, this
may represent a fruitful subject for a future community-wide
comparative study. The kdeg values of peptides in HW and
AA labeling are tabulated in supplemental Data S1. All fitted
peptide curves using the aforementioned two-compartment
model in AA and HW labeling are provided in supplemental
Data S2–S5.
A few peptides showed unexpectedly high turnover rates in

AA labeling, possibly because the precursor enrichment rate is
underestimated, leading to overcorrection. For these peptides,
it is likely that kdeg could not be determined with high accuracy
as the nonlinear model would fail to converge when it is limited
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by kp, and these peptides may be more accurately categorized
simply as having high turnover. Nevertheless, we conclude
that the two-compartment model performed well in correcting
the underestimation of kdeg for relatively high-turnover pro-
teins (kdeg ≥1 d−1); proteins for which label enrichment is
retarded measurably by the lag in precursor enrichment
(~1 d−1). This is more pronounced in tissues where the overall
protein turnover rates are high, such as the kidney and the
liver.

Evaluation of Data Quality Filters

Using the one- and two-compartment model results, we
examined the effect of various data quality filters on the depth
and reliability of protein turnover measurements. We varied
the filtering criteria by two metrics: first, the number of time
points in which the degree of label incorporation into protein
was quantifiable; and second, the coefficient of determination
(R2) of the one-compartment and two-compartment kinetic
models. We then considered their effects on interaction with
the number of quantifiable peptides and the precision of
turnover rates. To estimate precision, we considered the
median values of the geometric CV in turnover rates among
peptides uniquely mapping to the cognate protein, because
peptides derived from the same protein should be synthesized
and degraded together in vivo. Barring undocumented pro-
teoforms or post-translational processing, peptides from the
same protein should yield identical turnover rates, if the
measurement is precise.
First, we observed an expected decrease in the number of

available peptides as the thresholds for required time points
and R2 were raised. There was a sharp decrease in quantifi-
able peptides at all time point cutoffs when the R2 threshold
increased beyond ~0.8, suggesting a drastic decrease in
profiling depth if too stringent a threshold is used (Fig. 7A).
Although the number of quantifiable peptides between the
one-compartment and two-compartment models at each R2

threshold is similar, there is a noticeable difference in intra-
protein geometric CV. We found that the two-compartment
model led to increased variance at all R2 cutoffs. This in-
crease was especially noticeable in fast equilibration tissues
(liver and kidney) and is especially severe in AA labeling
(Fig. 7B). This is probably attributable to the two-compartment
model having more parameters that can vary. For example,
true kp may differ across cell types within a tissue, demanding
more stringent time-point and R2 thresholds. In our experi-
ence, data quality and the ability to make inference about
changes in turnover declined when the median geometric CV
increased beyond ~0.33.
When an R2 threshold of 0.8 to 0.95 is imposed, the inclu-

sion of peptides quantified at fewer time points had a modest
impact on intraprotein kdeg variance (Fig. 7C) while allowing
more quantifiable peptides (Fig. 7A). Overall, we surmise that
with a two-compartment model, a conservative R2 threshold is
needed to minimize intraprotein variance, whereas the number



FIG. 6. Comparisons of turnover rate constants across labels and kinetic models. A, degradation rate constants (kdeg) were obtained for
peptides from four tissues using amino acid (AA) or heavy water (HW) labeling and were fitted using a one-compartment (x-axis) or two-
compartment (y-axis) kinetic model to derive the first order kdeg (plotted on a log base 10 scale). Data points are peptide time series
commonly quantified in HW and AA experiments containing 1 lysine and with ≥9 time points and fitted with R2 ≥ 0.9. Red dashed line: unity.
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of quantifiable data points has a lesser impact. Hence, we
selected an R2 threshold of 0.9 and a time point threshold of 6
to investigate proteome-level features of protein turnover in
the four tissues.
A relevant question is what factors contribute to quantitative

errors at the peptide and protein levels across the two labeling
methods. Some indication of the extent of quantitative vari-
ance can be gleaned from peptides that differentially ionize
into multiple charged variants, such as [M + 2H]2+ or [M +
3H]3+. These should be labeled identically, but because they
occupy different segments of the m/z dimension, they would
be differently affected by background/other ions. As an
alternative approach, we note here that the quantitative errors
of HW labeling at the individual data point level may also be
compared with AA labeling by considering the empirically
derived fractional synthesis at day 0. Fractional synthesis is
derived using the linear changes in peptide isotopomer profile
from day 0 (prior to labeling, fractional synthesis of 0) to the
plateau value when only labeled peptides exist (fractional
synthesis of 1). For day 0 samples prior to label commence-
ment, true fractional synthesis is expected to be 0, and devi-
ation from 0 in the empirically derived values should then
reflect quantitative errors. Among peptides integrated at ≥6
time points and whose entire peptide time series (all time
points) are fitted to the two-compartment model with R2 of at
least ≥0.5, it can be seen that HW labeling is associated with a
wider distribution of derived day 0 fractional synthesis values
than AA labeling (supplemental Fig. S9A). This distribution
becomes narrower as only peptides passing more stringent R2

thresholds (≥0.9 or 0.95) are included such that the inter-
quartile range of derived fractional synthesis is within 5% from
0, compared with almost 10% at R2 ≥0.5, hence it appears
that quantitative errors at the individual isotopomer level
contributes at least partially to model fitting variance in HW
labeling. As may be expected, the precision and accuracy of
isotopomer quantitation increases for peptides with higher
intensity (supplemental Fig. S9B) for both HW and AA labeling.
There appears to be a bias toward a slight negative fractional
synthesis value in low-abundance peptides in HW labeling,
which would be indicative of an under-reporting of m1 to m5
peaks that arise from naturally occurring isotopes for low-
abundance peptides in the MS experiments. Nevertheless,
the quantitative precision at the isotopomer level is compen-
sated by kinetic modeling such that both methods had com-
parable precision at the peptide (Fig. 7) and protein levels (see
later). This analysis also excludes a source of error in AA la-
beling, where some peptides have high day 0 m6 intensities
because of interfering isobaric ions (data not shown). These
Marginal distribution shows data density. B, scatterplots of shared peptid
model (quantified time points ≥9, R2 ≥ 0.9, 1 lysine). Numbers denote rob
correlation coefficient (rho), and number of comparisons (n). Each data
bution of kdeg across tissues and labels. Red dashed lines denote media
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factors should be further examined in future work to improve
data quality and completeness.

Protein-Level Data Summary and Quantitative Precision

Finally, we aggregated peptide-level turnover rates to the
protein level to compare rate constants from different labeling
or aggregation methods. In the aforementioned analyses, to
avoid complications from different constituencies of peptides
for the two labeling methods, the peptide-level comparisons
are, where appropriate, based on the same peptide, labeled by
either the HW or the AA protocol. This is perhaps the most
stringent comparison of the two labeling methods, which is a
primary purpose of this article. The nature of the proteomics
workflow means that we obtain a peptide level measure of
incorporation, rather than a direct protein-centric result. This
raises the issue of how we aggregate the peptide-level mea-
surements into a protein parameter. There are two common
classes of approaches—the first is based on curve fitting to
the (time, RIA) data for each peptide and then aggregating
these peptide-sourced kdeg values into a protein kdeg value.
Alternatively, all (time, RIA) data, from all peptides, could be
combined into a single curve-fitting optimization. In the first
approach, it is essential that the time course is represented by
time points across the labeling period; otherwise, the fitting
can be very poor and lead to spurious outliers. In the second
approach, we can aggregate all time points, irrespective of the
completeness of the labeling curve for any one peptide.
We therefore examined four methods where peptide turn-

over rates may be reduced to a single protein turnover rate.
First (peptide median), the protein kdeg is taken as the median
of the peptide kdeg of all qualifying constituent peptides that
map uniquely to the protein in the protein sequence database,
and the median absolute deviation is used as a measure of
variance. Second (peptide harmonic mean), the harmonic
mean and harmonic mean standard deviation of the kdeg of
qualifying unique constituent peptides are used to calculate
the protein kdeg. Third (refitting), the isotope enrichment over
time data of all qualifying unique constituent peptides are
combined in fractional synthesis space, and optimization to a
single kinetic curve is performed using all data points. This
yields a protein level kdeg that best fits the model to the data,
and the fitting error is reported. Fourth (weighted refitting), as
aforementioned, but the optimization in addition accounts for
normalized log peptide intensity for weighted least square
calculations.
In our observation, protein-level refitting (methods 3 and 4)

is more prone to error propagation from the peptide level such
that if a peptide that fits poorly to the kinetic model is admitted
es quantified by HW and AA in each tissue using the two-compartment
ust correlation (biweight midcorrelation; bicor) coefficients, Spearman
point is one peptide-charge time series. C, histogram showing distri-
ns.



FIG. 7. Relationship between R2 and time point filters on peptide count and variance. A, the number of quantified peptides (y-axis) versus
R2 coefficient-of-determination thresholds in kinetic curve fitting (x-axis) with various time point filters (colors). Both R2 and minimal time points
have a large effect on the total number of fitted peptides. In all panels, only peptides with one lysine are included for both HW and AA. Red
dashed lines: R2 = 0.75. B, intraprotein variance, measured as the geometric coefficient of variation (CV) of best-fit kdeg among peptides uniquely
mapped to the same proteins (y-axis) versus R2 thresholds (x-axis) and time point thresholds (color). Only peptides belonging to proteins with
three or more quantified peptides were used for the analysis. Two-compartment models led to higher intraprotein variance. Horizontal red
dashed lines: geometric CV = 0.33; vertical red dashed lines: R2 = 0.75. C, intraprotein variance (y-axis) as in B, against the minimal number of
required time points, at different R2 thresholds. It can be seen that R2 has a more pronounced effect on kdeg precision than minimal time point
thresholds. AA, amino acid; HW, heavy water.

Protein Turnover Rate Analysis in Adult Animals
to the protein level, the quality of curve fitting at the protein
level decreases dramatically as measured in R2 and fitting
error. We therefore selected only well-fitted peptides (R2 ≥ 0.9,
six time points) based on the aforementioned analyses for
comparisons. The kdeg values, error of best-fit values (dkdeg),
and R2 of proteins from the refitting methods, as well as the
Mol Cell Proteomics (2022) 21(7) 100252 15
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kdeg and variance of the median and harmonic mean methods
for each protein are tabulated in supplemental Data S6. With
the peptide-level quality filter in place and comparing proteins
with at least two constituent peptides, there was excellent
rank similarity between the four methods (bicor 0.93–0.99;
Spearman's rho: 0.95–1.00) (supplemental Fig. S10A). There is
a slight bias toward higher turnover rates in protein-level
refitting when compared with peptide median summary
(supplemental Fig. S10B). Weighted and nonweighted fitting
produced virtually identical rate constants, when applied to
the aforementioned two-compartment model in AA and HW
labeling, which can be seen both from summary protein kdeg
data (supplemental Fig. S11A) as well as in individual protein-
level kinetics curves (supplemental Data S7–S10). The har-
monic mean summary appears to lead to lower variance than
the median, and both lead to lower apparent protein-level
variance than refitting (supplemental Fig. S11B). This may be
due to a combination of both the loss of individual peptide-
level variances in the summary calculations as well as the
nonlinear relationship between kdeg and isotopomer enrich-
ment in kinetic curve fitting, where relatively small changes in
curve position can lead to dramatic differences in kdeg when
the kinetic curve rises sharply.
Taking the median peptide kdeg value as the aggregation

method, we further compared the turnover rates of HW and
AA labeling at the protein level using the two-compartment
model. The overall agreement between HW and AA labeling
at the protein level is comparable to the peptide level (Fig. 8).
Moreover, at both the peptide and protein levels, HW and AA
labeling achieved overall comparable quantitative precision as
determined from dkdeg over kdeg at the peptide fitting level, or
median absolute deviation over median of kdeg at the protein
level, for proteins with more than one constituent peptides
FIG. 8. Protein level data summary. Scatterplot showing data distr
labeling, represented as the median of best-fit kdeg values from qualifying
HW and AA labeling integrated at ≥6 time points with peptide-level R2 ≥ 0
absolute deviation where a protein has two or more peptides. Peptide-
shown. Bicor, biweight midcorrelation coefficient; n, number of proteins
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(supplemental Fig. S12). Quantitative precision is lower in AA
labeling for fast-turnover peptides, but this difference is
attenuated at the protein level.
DISCUSSION

There is a need for rigorous assessment of the strategies
used to measure protein turnover rates in intact animals.
Irrespective of the labeling precursor, there is potential for a
delay in the equilibration of the precursor pool. Although this
can be ameliorated by the use of HW as a precursor label,
knowing the precursor enrichment kinetic rate constant (kp) in
animal studies is recognized as a challenge. The primary focus
of our study is the comparison of two labeling methods (HW
versus AA) with different precursor equilibration rates across
high- and low-turnover tissues. We also explore different ap-
proaches to derive the precursor RIA kinetics parameters in
AA labeling, but none of the three approaches taken is entirely
satisfactory for all tissues. If we assume the HW-fitted data
have higher reliability because of the minor impact of com-
plications from precursor delay, then tissue-specific values of
the precursor enrichment rate constants allow the AA data to
align closely with the HW data. These values were ~0.28 to
0.38 d–1 for the adult mouse heart and muscle and ~0.43 to
0.60 d–1 for the liver and kidney, but it was not entirely clear
how they might be reliably derived without the external refer-
ence of HW data.
Surprisingly, direct LC–MS measurement of intracellular

lysine pools gave kp values that were considerably lower than
required to be compatible with label enrichment of peptides.
There may be preferential label reutilization of AAs released by
degradation for synthesis de novo, such that the measured
free lysine is decoupled from the true precursor of protein
ibution of log10 protein turnover rates in HW (x-axis) and AA (y-axis)
peptides. Proteins with 1 or more common peptides with one lysine in
.9 are compared. Red dashed lines: unity. Error bars represent median
level fitting error for proteins with only one constituent peptide is not
compared. AA, amino acid; HW, heavy water.
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synthesis; the aminoacyl t-RNA pool. Other complications
may also cause the precursor enrichment rate to deviate from
exponential rise kinetics, for instance, unlabeled lysine is di-
etary and delayed by digestion prior to transport, whereas
labeled lysine is a free AA that is available to membrane
transporters immediately. Analytical approaches might require
complex measurements of precursor RIA in multiple “com-
partments”: plasma, interstitial fluid, intracellular fluid, as well
as in the aminoacyl tRNA pool.
We therefore explored two alternatives to estimate kp, but

neither approach was entirely satisfactory. We previously
advocated an approach based on mass isotopomer analysis
of peptides containing two instances of the AA (5). This
approach has the potential to reveal the true precursor iso-
topic enrichment based on the immediate protein precursor
pool (e.g., labeled aminoacyl t-RNA), but there is a technical
challenge associated with determination of precursor pool
behavior. Because all subsequent protein turnover measure-
ments use these kinetics that define precursor behavior, it is
important to analyze doubly labeled peptides carefully, either
by manually extracting clean and readily isolatable extracted
ion MS1 chromatograms, or by automating analysis of all
peptides and modeling the best estimates for each time point.
Unexpectedly, there is a wide distribution of calculated RIA
values from the heavy–heavy (i.e., m12) peaks that have
identified two heavy lysines and the heavy–light (i.e., m6)
peaks that have incorporated one lysine. A best-fit exponential
model of RIA over time has large residuals but yields values of
kp consistent with expectation. The RIA fitting also yields
different best-fit RIAp plateau values in each tissue, which is
counterintuitive given that one might presume all tissues
would equilibrate with the same dietary RIA. Over the 30 d
labeling window used here, the precursor pool would be
diluted by unlabeled lysine derived from the pre-existing
protein pool (the subjects are adult, nongrowing). Further-
more, this approach will suffer from coupling to the rate of
turnover of the protein when kp is not constant or the protein
has not completely turned over. A very high turnover protein
(one that might not be measurable with any accuracy, as tis-
sues cannot be sampled rapidly enough) would be replaced
quickly, and thus become a high-frequency sensor of the
precursor pool. By contrast, a protein with a lower rate of
replacement would retain a significant proportion of the pro-
tein pool that was synthesized in the early stages of precursor
pool equilibration, thus giving a dampened measure of the rate
of precursor rise to plateau, although the plateau value for RIA
should be the same in either instance. However, empirically,
the kp values calculated from dilysine peptides are not
correlated with the kdeg of the peptides.
In parallel, we examined a two-compartment nested opti-

mization method to gain the best fit kp that explains the la-
beling curves directly from the peptide data. This method may
compensate for the time integral in the dilysine peptide anal-
ysis and indeed appears to perform well for slow-equilibration
tissues such as the heart and the skeletal muscle. However,
when kdeg << kp for most peptides in a fast-equilibration tissue
such as the liver, the two-compartment model never out-
performed the one-compartment model in minimizing fitting
errors, likely because the initial sigmoidal “bend” in the kinetic
curve of the two-compartment model is not apparent, and
thus, different combinatorial values of kp and kdeg can explain
the peptide RIA data equally well. Optimization of complete
datasets to derive precursor behavior may also introduce
uncertainty, and the error gradients are shallow for many
combinations of kp and kdeg.
Taken together, these complications serve to highlight the

difficulties of using labeled AAs in intact animal systems. All
the solutions that have been explored here are complicated
and require additional analyses or complex modeling. We
therefore proceeded with a two-compartment model with kp
values from automated dilysine analysis and weighted least
square optimization of all data points, as the optimizations led
to kdeg that agreed well with HW data. Although we place
greater reliability on HW-derived values, it should be
acknowledged that there can be no “ground truth” for turnover
measurements. Whilst premixed synthetic isotope analogs
with known isotope ratios may be used as a standard for the
accuracy of MS quantification of isotopomer intensities, they
cannot serve as a calibration target of turnover rates in vivo or
precursor enrichment. In the steady state in particular, the true
rate of replacement of a protein cannot be known without bias,
whether measured by tracer experiments or by fluorophore
tagging, the perturbations introduced and the analytical un-
certainty in the measurements both introduce the potential for
deviation from the true degradation rate. However, we reason
that the HW method gives the closest approximation. This is
based on the relative immunity from precursor pool kinetics
due to of the fast equilibration of water, and is further sup-
ported by the labeling trajectory of the MUPs.
A more complex three-exponent two-compartment model

(11) that accounts for label dilution from global protein
degradation further improved data fit and concordance with
HW results incrementally. However, one is left with the same
problem of having to learn the model parameters from the data
without guarantee that such values can be found. Moreover,
even if a complex model fits the data more closely, it cannot
be guaranteed that the resulting optimized kdeg are in fact
accurate values as they are inside the cell. The lack of an
acceptable gold standard of turnover rates of proteins in vivo
complicates model comparisons. Literature values of turnover
rates in vivo remain few and vary greatly by species, tissues,
age, and physiological states, making direct comparisons
difficult. Prior studies that compared fitting models largely
used only two criteria to compare different models—(i) mea-
sures of model fit such as residual sums of square, co-
efficients of determination, or information criteria; (ii) the ability
of the model to avoid unreasonable kinetic rate constants in
the fitted results, for example, negative values, or values that
Mol Cell Proteomics (2022) 21(7) 100252 17
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are out of the allowable numerical ranges given the sampling
time points. Generally speaking, however, the introduction of
additional parameters in a complex model will allow the ki-
netics function to move more freely to the data points, which
can lead to trade-offs between variance and bias and the
possibility of overfitting.
In the absence of kdeg standards, we propose that intra-

protein variance should be examined as one of multiple criteria
by which analytical methods to derive turnover rates are
evaluated. This is based on the simple assumption that a
protein is created and destroyed in its entirety (i.e., a protein is
never partially excised from one terminus then repaired with
replacement AAs). Hence, different peptides from the same
protein should share similar turnover rates, if the modeling
results are reliable, and by extension, this gives an estimate of
whether the model will return identical kdeg for two polypeptide
chains with equal true turnover rates. We found that the two-
compartment model generally increases intraprotein variance
at equal R2 cutoffs compared with the simple exponential
model. However, because of the clear inadequacy of this
exponential model in accounting for precursor delay in AA
labeling, we conclude that a two-compartment model should
be preferred, but at the same time, stringent data filtering
strategies are needed for model fitting in order to maximize the
number of quantified peptides while minimizing intraprotein
variance.
In summary, this study is a highly controlled comparison of

HW and AA labeling strategies for measurement of peptide
turnover rates in four tissues in intact animals. In this article,
we have evaluated strategies for high-quality measurements
of turnover rates—discussion of the biological significance of
these results will be addressed in a separate publication. It is
possible to bring the two datasets into close agreement when
the AA precursor behavior is addressed to provide a suitable
kp correction. For robust measurement of turnover rates in
intact animals, we would recommend: (a) labeling with [2H2]O,
(b) determination of labeling profiles in a peptide-specific
analytical workflow to compensate for the specificity of HW
labeling, (c) aggregation of data from multiple peptides to in-
crease confidence in the extraction of the MS1 isotopomer
profiles, (d) stringent quality filters at the peptide level in the
analysis methods to minimize intraprotein variance, and (e)
distribution of replicates in the time domain, to define as broad
a range of turnover rates as possible. In reporting turnover
rates, care should be given to the limitations imposed by the
sampling time points—these intervals set limits on the range
of turnover rates that are accessible. This is eased by a
temporally expanding sampling window.
A theoretical analysis of kinetic curves can help set

boundary conditions, which will be similar to those illustrated
in Figure 1. A more sophisticated estimate will require addi-
tional information and for us to define additional criteria, for
example, minimum of x informative time points (let us say,
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between 0.05 and 0.9 incorporation), compared with the time
point–data quality relationship (Fig. 7). This then defines ex-
pectations on turnover rate and thus sets the range. For
example, sampling of 1, 2, 3, 4, 8, 10, 13, 16, 20, 32 d, and
working on the assumption of a measurable abundance for
labeled or unlabeled peptide of 5% of the total, over three data
points, should yield measurable variation in the RIA for pro-
teins with kdeg values between 0.002 d−1 and 1 d−1. Beyond
these limits, it is only possible to say “less than 0.002 d−1” and
“greater than 1 d−1.” Ideally, sampling intervals less than 1 day
would allow access to higher turnover proteins, arguably only
feasible with HW strategies. At the other extreme, very low
turnover proteins could require labeling periods of many
months, with less frequent sampling.
AA labeling is analytically simple but metabolically complex,

with tissue-dependent variation in behavior. Given the chal-
lenge of determination of kp values for a two-compartment
model in AA labeling, dilysine peptides and iterative two-
compartment model fitting performed better than direct
measurement of free lysine in tissues. These approaches
provided kp values that are consistent with the observed
peptide data. Improved methods to model the RIA values of
double-labeled peptides, such as a time integral of protein
pool replacement, could improve measurements using AA
labeling approaches. By contrast, HW equilibrates quickly and
nonenzymatically, and hence, kp is systems wide across tis-
sues and requires minimal correction in precursor pool equil-
ibration. HW labeling is also cheaper and enables the
quantification of a substantially greater number of peptides.
On the other hand, isolation and analysis of the subtly shifting
isotopomer profile in HW labeling is more challenging.
Because turnover measurements track the tracer through the
protein/peptide pool, it is usual to acquire these data at the
MS1 level. In a complex proteome analysis, it is inevitable that
the isotopomer peaks will contain noise and potentially, con-
tributions from other peptides. Whilst for AA labeling, this is
true of the unlabeled (m0) and the labeled (m6) monoisotopic
peaks, with HW protocols, there are more opportunities for
interference in the intensity of the six isotopomer peaks
(m0, m1, m2, m3, m4, and m5). For peptide ions that are high
mass, have many potential label centers, or have high
enrichment because of fast turnover, the m0 peak will be a
minor ion and could further increase error through division of
the small numerator by the sum of mi. On the other hand,
shifts in isotopomer profiles may be subtle if precursor RIA is
low or for select peptides with fewer labelable protons. HW
labeling therefore places higher demand for accurate relative
isotopomer abundance quantitation. To improve the isolation
of the true peptides, high-resolution MS1 spectra are
preferred, to allow the extraction of the area under the chro-
matogram for that ion.
Future studies of whole animal protein turnover will require

even greater attention to a range of prerequisites, including
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choice of label—at present, the strongest case can be made
for the use of HW. Furthermore, the duration of the labeling
experiment (to cover the broadest range of turnover rates that
are required) is critical, although it will always be challenging
to recover accurate rate constants for particularly high and low
turnover proteins. There is also an argument for an increased
number of time points to scribe the labeling curve—we would
argue that points distributed across the labeling curve are
preferable to replicate samples with fewer time points. When
only one parameter is to be optimized in a kinetic model (e.g.,
in a monoexponential model or a two-compartment model
after kp and RIAp are found), it would be perfectly possible to
calculate an accurate turnover rate from a single time point, in
an error-free world. However, as is evidenced from this study,
there is considerable variance in such experiments, and mul-
tiple replicates are required. Furthermore, if all samples were
taken at a single time point, then the range of measurable
turnover rate constants is restricted, according to the argu-
ment in Figure 1. Distribution of sampling intervals across an
extended period, with a sampling protocol that has some
properties of a geometric expansion, allows multiple data
points to be collected for either high turnover or low turnover
proteins, and moreover allow one to fully define the shape of
the curve of the two-compartment models to extract both rate
constants. Given that these studies are conducted on animals,
bringing the pressure of reduction of usage, we would argue
that sampling should be distributed in time, rather than by
taking multiple replicates at fewer time points, to obtain the
broadest possible informative range of kdeg values.
Finally, there is a need for a well-conducted labeling study

to be analyzed by many of the analytical packages for turnover
determination—a detailed comparison of the resultant outputs
would be especially informative. This would lead us to a more
open democratization of the analytical workflow and a clearer
understanding of where there are variances in the final out-
puts, and why. To this end, all raw data from this study are
available (ProteomeXchange PXD029639). An animal that has
been labeled in such studies is often the source of just one or
a few tissues. The “3R” principles underpinning animal
research (Replacement, Reduction, and Refinement), specif-
ically, reduction, would be well served if, in future, labeling and
turnover studies were enhanced by a willingness to share
unused tissues, to allow others to replicate studies, improve
data analysis, and extend understanding. Indeed, in a recent
review, a future imperative was exactly this; “Data and tissue-
sharing offer opportunities for more efficient use of information
collected from animals and may avoid unnecessary
repetition” (48).
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